3,410 research outputs found

    Abstractions of Stochastic Hybrid Systems

    Get PDF
    In this paper we define a stochastic bisimulation concept for a very general class of stochastic hybrid systems, which subsumes most classes of stochastic hybrid systems. The definition of this bisimulation builds on the concept of zigzag morphism defined for strong Markov processes. The main result is that this stochastic bisimulation is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures

    Generative Model with Coordinate Metric Learning for Object Recognition Based on 3D Models

    Full text link
    Given large amount of real photos for training, Convolutional neural network shows excellent performance on object recognition tasks. However, the process of collecting data is so tedious and the background are also limited which makes it hard to establish a perfect database. In this paper, our generative model trained with synthetic images rendered from 3D models reduces the workload of data collection and limitation of conditions. Our structure is composed of two sub-networks: semantic foreground object reconstruction network based on Bayesian inference and classification network based on multi-triplet cost function for avoiding over-fitting problem on monotone surface and fully utilizing pose information by establishing sphere-like distribution of descriptors in each category which is helpful for recognition on regular photos according to poses, lighting condition, background and category information of rendered images. Firstly, our conjugate structure called generative model with metric learning utilizing additional foreground object channels generated from Bayesian rendering as the joint of two sub-networks. Multi-triplet cost function based on poses for object recognition are used for metric learning which makes it possible training a category classifier purely based on synthetic data. Secondly, we design a coordinate training strategy with the help of adaptive noises acting as corruption on input images to help both sub-networks benefit from each other and avoid inharmonious parameter tuning due to different convergence speed of two sub-networks. Our structure achieves the state of the art accuracy of over 50\% on ShapeNet database with data migration obstacle from synthetic images to real photos. This pipeline makes it applicable to do recognition on real images only based on 3D models.Comment: 14 page

    Semipullbacks of labelled Markov processes

    Get PDF
    A labelled Markov process (LMP) consists of a measurable space SS together with an indexed family of Markov kernels from SS to itself. This structure has been used to model probabilistic computations in Computer Science, and one of the main problems in the area is to define and decide whether two LMP SS and SS' "behave the same". There are two natural categorical definitions of sameness of behavior: SS and SS' are bisimilar if there exist an LMP TT and measure preserving maps forming a diagram of the shape STS S\leftarrow T \rightarrow{S'}; and they are behaviorally equivalent if there exist some U U and maps forming a dual diagram SUS S\rightarrow U \leftarrow{S'}. These two notions differ for general measurable spaces but Doberkat (extending a result by Edalat) proved that they coincide for analytic Borel spaces, showing that from every diagram SUS S\rightarrow U \leftarrow{S'} one can obtain a bisimilarity diagram as above. Moreover, the resulting square of measure preserving maps is commutative (a "semipullback"). In this paper, we extend the previous result to measurable spaces SS isomorphic to a universally measurable subset of a Polish space with the trace of the Borel σ\sigma-algebra, using a version of Strassen's theorem on common extensions of finitely additive measures.Comment: 10 pages; v2: missing attribution to Doberka

    The wall of the cave

    Get PDF
    In this article old and new relations between gauge fields and strings are discussed. We add new arguments that the Yang Mills theories must be described by the non-critical strings in the five dimensional curved space. The physical meaning of the fifth dimension is that of the renormalization scale represented by the Liouville field. We analyze the meaning of the zigzag symmetry and show that it is likely to be present if there is a minimal supersymmetry on the world sheet. We also present the new string backgrounds which may be relevant for the description of the ordinary bosonic Yang-Mills theories. The article is written on the occasion of the 40-th anniversary of the IHES.Comment: 18 pages, Late

    A Geometric Perspective on Sparse Filtrations

    Full text link
    We present a geometric perspective on sparse filtrations used in topological data analysis. This new perspective leads to much simpler proofs, while also being more general, applying equally to Rips filtrations and Cech filtrations for any convex metric. We also give an algorithm for finding the simplices in such a filtration and prove that the vertex removal can be implemented as a sequence of elementary edge collapses

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures
    corecore