49,658 research outputs found

    Strong geodetic problem on Cartesian products of graphs

    Get PDF
    The strong geodetic problem is a recent variation of the geodetic problem. For a graph GG, its strong geodetic number sg(G){\rm sg}(G) is the cardinality of a smallest vertex subset SS, such that each vertex of GG lies on a fixed shortest path between a pair of vertices from SS. In this paper, the strong geodetic problem is studied on the Cartesian product of graphs. A general upper bound for sg(GH){\rm sg}(G \,\square\, H) is determined, as well as exact values for KmKnK_m \,\square\, K_n, K1,kPlK_{1, k} \,\square\, P_l, and certain prisms. Connections between the strong geodetic number of a graph and its subgraphs are also discussed.Comment: 18 pages, 9 figure

    An Improved Point-Line Incidence Bound Over Arbitrary Fields

    Get PDF
    We prove a new upper bound for the number of incidences between points and lines in a plane over an arbitrary field F\mathbb{F}, a problem first considered by Bourgain, Katz and Tao. Specifically, we show that mm points and nn lines in F2\mathbb{F}^2, with m7/8<n<m8/7m^{7/8}<n<m^{8/7}, determine at most O(m11/15n11/15)O(m^{11/15}n^{11/15}) incidences (where, if F\mathbb{F} has positive characteristic pp, we assume m2n13p15m^{-2}n^{13}\ll p^{15}). This improves on the previous best known bound, due to Jones. To obtain our bound, we first prove an optimal point-line incidence bound on Cartesian products, using a reduction to a point-plane incidence bound of Rudnev. We then cover most of the point set with Cartesian products, and we bound the incidences on each product separately, using the bound just mentioned. We give several applications, to sum-product-type problems, an expander problem of Bourgain, the distinct distance problem and Beck's theorem.Comment: 18 pages. To appear in the Bulletin of the London Mathematical Societ
    corecore