16,306 research outputs found

    A divide and conquer method for symbolic regression

    Full text link
    Symbolic regression aims to find a function that best explains the relationship between independent variables and the objective value based on a given set of sample data. Genetic programming (GP) is usually considered as an appropriate method for the problem since it can optimize functional structure and coefficients simultaneously. However, the convergence speed of GP might be too slow for large scale problems that involve a large number of variables. Fortunately, in many applications, the target function is separable or partially separable. This feature motivated us to develop a new method, divide and conquer (D&C), for symbolic regression, in which the target function is divided into a number of sub-functions and the sub-functions are then determined by any of a GP algorithm. The separability is probed by a new proposed technique, Bi-Correlation test (BiCT). D&C powered GP has been tested on some real-world applications, and the study shows that D&C can help GP to get the target function much more rapidly

    The Cascading Haar Wavelet algorithm for computing the Walsh-Hadamard Transform

    Full text link
    We propose a novel algorithm for computing the Walsh-Hadamard Transform (WHT) which consists entirely of Haar wavelet transforms. We prove that the algorithm, which we call the Cascading Haar Wavelet (CHW) algorithm, shares precisely the same serial complexity as the popular divide-and-conquer algorithm for the WHT. We also propose a natural way of parallelizing the algorithm which has a number of attractive features

    Solving Set Constraint Satisfaction Problems using ROBDDs

    Full text link
    In this paper we present a new approach to modeling finite set domain constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We show that it is possible to construct an efficient set domain propagator which compactly represents many set domains and set constraints using ROBDDs. We demonstrate that the ROBDD-based approach provides unprecedented flexibility in modeling constraint satisfaction problems, leading to performance improvements. We also show that the ROBDD-based modeling approach can be extended to the modeling of integer and multiset constraint problems in a straightforward manner. Since domain propagation is not always practical, we also show how to incorporate less strict consistency notions into the ROBDD framework, such as set bounds, cardinality bounds and lexicographic bounds consistency. Finally, we present experimental results that demonstrate the ROBDD-based solver performs better than various more conventional constraint solvers on several standard set constraint problems
    • …
    corecore