24 research outputs found

    Effective Capacity in Multiple Access Channels with Arbitrary Inputs

    Full text link
    In this paper, we consider a two-user multiple access fading channel under quality-of-service (QoS) constraints. We initially formulate the transmission rates for both transmitters, where the transmitters have arbitrarily distributed input signals. We assume that the receiver performs successive decoding with a certain order. Then, we establish the effective capacity region that provides the maximum allowable sustainable arrival rate region at the transmitters' buffers under QoS guarantees. Assuming limited transmission power budgets at the transmitters, we attain the power allocation policies that maximize the effective capacity region. As for the decoding order at the receiver, we characterize the optimal decoding order regions in the plane of channel fading parameters for given power allocation policies. In order to accomplish the aforementioned objectives, we make use of the relationship between the minimum mean square error and the first derivative of the mutual information with respect to the power allocation policies. Through numerical results, we display the impact of input signal distributions on the effective capacity region performance of this two-user multiple access fading channel

    Linear MIMO Precoding in Jointly-Correlated Fading Multiple Access Channels with Finite Alphabet Signaling

    Full text link
    In this paper, we investigate the design of linear precoders for multiple-input multiple-output (MIMO) multiple access channels (MAC). We assume that statistical channel state information (CSI) is available at the transmitters and consider the problem under the practical finite alphabet input assumption. First, we derive an asymptotic (in the large-system limit) weighted sum rate (WSR) expression for the MIMO MAC with finite alphabet inputs and general jointly-correlated fading. Subsequently, we obtain necessary conditions for linear precoders maximizing the asymptotic WSR and propose an iterative algorithm for determining the precoders of all users. In the proposed algorithm, the search space of each user for designing the precoding matrices is its own modulation set. This significantly reduces the dimension of the search space for finding the precoding matrices of all users compared to the conventional precoding design for the MIMO MAC with finite alphabet inputs, where the search space is the combination of the modulation sets of all users. As a result, the proposed algorithm decreases the computational complexity for MIMO MAC precoding design with finite alphabet inputs by several orders of magnitude. Simulation results for finite alphabet signalling indicate that the proposed iterative algorithm achieves significant performance gains over existing precoder designs, including the precoder design based on the Gaussian input assumption, in terms of both the sum rate and the coded bit error rate.Comment: 7 pages, 2 figures, accepted for ICC1

    A Novel Power Allocation Scheme for Two-User GMAC with Finite Input Constellations

    Full text link
    Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.Comment: To appear in IEEE Transactions on Wireless Communications, 10 pages and 7 figure
    corecore