9,170 research outputs found

    Properties of Two-Dimensional Words

    Get PDF
    Combinatorics on words in one dimension is a well-studied subfield of theoretical computer science with its origins in the early 20th century. However, the closely-related study of two-dimensional words is not as popular, even though many results seem naturally extendable from the one-dimensional case. This thesis investigates various properties of these two-dimensional words. In the early 1960s, Roger Lyndon and Marcel-Paul Schutzenberger developed two famous results on conditions where nontrivial prefixes and suffixes of a one-dimensional word are identical and on conditions where two one-dimensional words commute. Here, the theorems of Lyndon and Schutzenberger are extended in the one-dimensional case to include a number of additional equivalent conditions. One such condition is shown to be equivalent to the defect theorem from formal languages and coding theory. The same theorems of Lyndon and Schutzenberger are then generalized to the two-dimensional case. The study of two-dimensional words continues by considering primitivity and periodicity in two dimensions, where a method is developed to enumerate two-dimensional primitive words. An efficient computer algorithm is presented to assist with checking the property of primitivity in two dimensions. Finally, borders in both one and two dimensions are considered, with some results being proved and others being offered as suggestions for future work. Another efficient algorithm is presented to assist with checking whether a two-dimensional word is bordered. The thesis concludes with a selection of open problems and an appendix containing extensive data related to one such open problem

    Properties of Two-Dimensional Words

    Get PDF
    Combinatorics on words in one dimension is a well-studied subfield of theoretical computer science with its origins in the early 20th century. However, the closely-related study of two-dimensional words is not as popular, even though many results seem naturally extendable from the one-dimensional case. This thesis investigates various properties of these two-dimensional words. In the early 1960s, Roger Lyndon and Marcel-Paul Schutzenberger developed two famous results on conditions where nontrivial prefixes and suffixes of a one-dimensional word are identical and on conditions where two one-dimensional words commute. Here, the theorems of Lyndon and Schutzenberger are extended in the one-dimensional case to include a number of additional equivalent conditions. One such condition is shown to be equivalent to the defect theorem from formal languages and coding theory. The same theorems of Lyndon and Schutzenberger are then generalized to the two-dimensional case. The study of two-dimensional words continues by considering primitivity and periodicity in two dimensions, where a method is developed to enumerate two-dimensional primitive words. An efficient computer algorithm is presented to assist with checking the property of primitivity in two dimensions. Finally, borders in both one and two dimensions are considered, with some results being proved and others being offered as suggestions for future work. Another efficient algorithm is presented to assist with checking whether a two-dimensional word is bordered. The thesis concludes with a selection of open problems and an appendix containing extensive data related to one such open problem

    On the presentation of pointed Hopf algebras

    Full text link
    We give a presentation in terms of generators and relations of Hopf algebras generated by skew-primitive elements and abelian group of group-like elements with action given via characters. This class of pointed Hopf algebras has shown great importance in the classification theory and can be seen as generalized quantum groups. As a consequence we get an analog presentation of Nichols algebras of diagonal type

    The algebra of cell-zeta values

    Full text link
    In this paper, we introduce cell-forms on M0,n\mathcal{M}_{0,n}, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space M0,n(R)\mathcal{M}_{0,n}(\mathbb{R}). We show that the cell-forms generate the top-dimensional cohomology group of M0,n\mathcal{M}_{0,n}, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell XX. The elements of this basis are called insertion forms, their integrals over XX are real numbers, called cell-zeta values, which generate a Q\mathbb{Q}-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations
    • …
    corecore