37,072 research outputs found

    Min-Max Theorems for Packing and Covering Odd (u,v)(u,v)-trails

    Full text link
    We investigate the problem of packing and covering odd (u,v)(u,v)-trails in a graph. A (u,v)(u,v)-trail is a (u,v)(u,v)-walk that is allowed to have repeated vertices but no repeated edges. We call a trail odd if the number of edges in the trail is odd. Let ν(u,v)\nu(u,v) denote the maximum number of edge-disjoint odd (u,v)(u,v)-trails, and τ(u,v)\tau(u,v) denote the minimum size of an edge-set that intersects every odd (u,v)(u,v)-trail. We prove that τ(u,v)≤2ν(u,v)+1\tau(u,v)\leq 2\nu(u,v)+1. Our result is tight---there are examples showing that τ(u,v)=2ν(u,v)+1\tau(u,v)=2\nu(u,v)+1---and substantially improves upon the bound of 88 obtained in [Churchley et al 2016] for τ(u,v)/ν(u,v)\tau(u,v)/\nu(u,v). Our proof also yields a polynomial-time algorithm for finding a cover and a collection of trails satisfying the above bounds. Our proof is simple and has two main ingredients. We show that (loosely speaking) the problem can be reduced to the problem of packing and covering odd (uv,uv)(uv,uv)-trails losing a factor of 2 (either in the number of trails found, or the size of the cover). Complementing this, we show that the odd-(uv,uv)(uv,uv)-trail packing and covering problems can be tackled by exploiting a powerful min-max result of [Chudnovsky et al 2006] for packing vertex-disjoint nonzero AA-paths in group-labeled graphs

    Planar graphs as L-intersection or L-contact graphs

    Full text link
    The L-intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are {L, |, --}-contact graphs which are the contact graphs of axis parallel L, |, and -- shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are L-intersection graphs, and that triangle-free planar graphs are {L, |, --}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    Single-Strip Triangulation of Manifolds with Arbitrary Topology

    Full text link
    Triangle strips have been widely used for efficient rendering. It is NP-complete to test whether a given triangulated model can be represented as a single triangle strip, so many heuristics have been proposed to partition models into few long strips. In this paper, we present a new algorithm for creating a single triangle loop or strip from a triangulated model. Our method applies a dual graph matching algorithm to partition the mesh into cycles, and then merges pairs of cycles by splitting adjacent triangles when necessary. New vertices are introduced at midpoints of edges and the new triangles thus formed are coplanar with their parent triangles, hence the visual fidelity of the geometry is not changed. We prove that the increase in the number of triangles due to this splitting is 50% in the worst case, however for all models we tested the increase was less than 2%. We also prove tight bounds on the number of triangles needed for a single-strip representation of a model with holes on its boundary. Our strips can be used not only for efficient rendering, but also for other applications including the generation of space filling curves on a manifold of any arbitrary topology.Comment: 12 pages, 10 figures. To appear at Eurographics 200

    Thermodynamic graph-rewriting

    Get PDF
    We develop a new thermodynamic approach to stochastic graph-rewriting. The ingredients are a finite set of reversible graph-rewriting rules called generating rules, a finite set of connected graphs P called energy patterns and an energy cost function. The idea is that the generators define the qualitative dynamics, by showing which transformations are possible, while the energy patterns and cost function specify the long-term probability π\pi of any reachable graph. Given the generators and energy patterns, we construct a finite set of rules which (i) has the same qualitative transition system as the generators; and (ii) when equipped with suitable rates, defines a continuous-time Markov chain of which π\pi is the unique fixed point. The construction relies on the use of site graphs and a technique of `growth policy' for quantitative rule refinement which is of independent interest. This division of labour between the qualitative and long-term quantitative aspects of the dynamics leads to intuitive and concise descriptions for realistic models (see the examples in S4 and S5). It also guarantees thermodynamical consistency (AKA detailed balance), otherwise known to be undecidable, which is important for some applications. Finally, it leads to parsimonious parameterizations of models, again an important point in some applications
    • …
    corecore