1,344 research outputs found

    A Survey on Modulation Techniques in Molecular Communication via Diffusion

    Get PDF
    This survey paper focuses on modulation aspects of molecular communication, an emerging field focused on building biologically-inspired systems that embed data within chemical signals. The primary challenges in designing these systems are how to encode and modulate information onto chemical signals, and how to design a receiver that can detect and decode the information from the corrupted chemical signal observed at the destination. In this paper, we focus on modulation design for molecular communication via diffusion systems. In these systems, chemical signals are transported using diffusion, possibly assisted by flow, from the transmitter to the receiver. This tutorial presents recent advancements in modulation and demodulation schemes for molecular communication via diffusion. We compare five different modulation types: concentration-based, type-based, timing-based, spatial, and higher-order modulation techniques. The end-to-end system designs for each modulation scheme are presented. In addition, the key metrics used in the literature to evaluate the performance of these techniques are also presented. Finally, we provide a numerical bit error rate comparison of prominent modulation techniques using analytical models. We close the tutorial with a discussion of key open issues and future research directions for design of molecular communication via diffusion systems.Comment: Preprint of the accepted manuscript for publication in IEEE Surveys and Tutorial

    Bayesian and Hybrid Cramér–Rao Bounds for the Carrier Recovery Under Dynamic Phase Uncertain Channels

    Get PDF
    International audience—In this paper, we study Bayesian and hybrid Cramér–Rao bounds (BCRB and HCRB) for the code-aided (CA), the data-aided (DA), and the non-data-aided (NDA) dynamical phase estimation of QAM modulated signals. We address the bounds derivation for both the offline scenario, for which the whole observation frame is used, and the online which only takes into account the current and the previous observations. For the CA scenario we show that the computation of the Bayesian information matrix (BIM) and of the hybrid information matrix (HIM) is NP hard. We then resort to the belief-propagation (BP) algorithm or to the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm to obtain some approximate values. Moreover, in order to avoid the calculus of the inverse of the BIM and of the HIM, we present some closed form expressions for the various CRBs, which greatly reduces the computation complexity. Finally, some simulations allow us to compare the possible improvements enabled by the offline and the CA scenarios. Index Terms—Bayesian Cramér–Rao bound (BCRB), code-aided (CA) bound, data-aided (DA) bound, dynam-ical phase estimation, hybrid Cramér–Rao bound (HCRB), non-data-aided (NDA), offline, online

    Doctor of Philosophy

    Get PDF
    dissertationWireless communications pervade all avenues of modern life. The rapid expansion of wireless services has increased the need for transmission schemes that are more spectrally efficient. Dynamic spectrum access (DSA) systems attempt to address this need by building a network where the spectrum is used opportunistically by all users based on local and regional measurements of its availability. One of the principal requirements in DSA systems is to initialize and maintain a control channel to link the nodes together. This should be done even before a complete spectral usage map is available. Additionally, with more users accessing the spectrum, it is important to maintain a stable link in the presence of significant interference in emergency first-responders, rescue, and defense applications. In this thesis, a new multicarrier spread spectrum (MC-SS) technique based on filter banks is presented. The new technique is called filter bank multicarrier spread spectrum (FB-MC-SS). A detailed theory of the underlying properties of this signal are given, with emphasis on the properties that lend themselves to synchronization at the receiver. Proposed algorithms for synchronization, channel estimation, and detection are implemented on a software-defined radio platform to complete an FB-MC-SS transceiver and to prove the practicality of the technique. FB-MC-SS is shown through physical experimentation to be significantly more robust to partial band interference compared to direct sequence spread spectrum. With a higher power interfering signal occupying 90% of its band, FB-MC-SS maintains a low bit error rate. Under the same interference conditions, DS-SS fails completely. This experimentation leads to a theoretical analysis that shows in a frequency selective channel with additive white noise, the FB-MC-SS system has performance that equals that obtained by a DS-SS system employing an optimal rake receiver. This thesis contains a detailed chapter on implementation and design, including lessons learned while prototyping the system. This is to assist future system designers to quickly gain proficiency in further development of this technology
    • …
    corecore