120 research outputs found

    From Instantly Decodable to Random Linear Network Coding

    Full text link
    Our primary goal in this paper is to traverse the performance gap between two linear network coding schemes: random linear network coding (RLNC) and instantly decodable network coding (IDNC) in terms of throughput and decoding delay. We first redefine the concept of packet generation and use it to partition a block of partially-received data packets in a novel way, based on the coding sets in an IDNC solution. By varying the generation size, we obtain a general coding framework which consists of a series of coding schemes, with RLNC and IDNC identified as two extreme cases. We then prove that the throughput and decoding delay performance of all coding schemes in this coding framework are bounded between the performance of RLNC and IDNC and hence throughput-delay tradeoff becomes possible. We also propose implementations of this coding framework to further improve its throughput and decoding delay performance, to manage feedback frequency and coding complexity, or to achieve in-block performance adaption. Extensive simulations are then provided to verify the performance of the proposed coding schemes and their implementations.Comment: 30 pages with double space, 14 color figure

    On Throughput and Decoding Delay Performance of Instantly Decodable Network Coding

    Full text link
    In this paper, a comprehensive study of packet-based instantly decodable network coding (IDNC) for single-hop wireless broadcast is presented. The optimal IDNC solution in terms of throughput is proposed and its packet decoding delay performance is investigated. Lower and upper bounds on the achievable throughput and decoding delay performance of IDNC are derived and assessed through extensive simulations. Furthermore, the impact of receivers' feedback frequency on the performance of IDNC is studied and optimal IDNC solutions are proposed for scenarios where receivers' feedback is only available after and IDNC round, composed of several coded transmissions. However, since finding these IDNC optimal solutions is computational complex, we further propose simple yet efficient heuristic IDNC algorithms. The impact of system settings and parameters such as channel erasure probability, feedback frequency, and the number of receivers is also investigated and simple guidelines for practical implementations of IDNC are proposed.Comment: This is a 14-page paper submitted to IEEE/ACM Transaction on Networking. arXiv admin note: text overlap with arXiv:1208.238

    On Minimizing the Maximum Broadcast Decoding Delay for Instantly Decodable Network Coding

    Full text link
    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a definition of delay for IDNC allows a more equitable distribution of the delays between the different receivers and thus a better Quality of Service (QoS). In order to solve this problem, we first derive the expressions for the probability distributions of maximum decoding delay increments. Given these expressions, we formulate the problem as a maximum weight clique problem in the IDNC graph. Although this problem is known to be NP-hard, we design a greedy algorithm to perform effective packet selection. Through extensive simulations, we compare the sum decoding delay and the max decoding delay experienced when applying the policies to minimize the sum decoding delay [1] and our policy to reduce the max decoding delay. Simulations results show that our policy gives a good agreement among all the delay aspects in all situations and outperforms the sum decoding delay policy to effectively minimize the sum decoding delay when the channel conditions become harsher. They also show that our definition of delay significantly improve the number of served receivers when they are subject to strict delay constraints

    Centralized and Cooperative Transmission of Secure Multiple Unicasts using Network Coding

    Full text link
    We introduce a method for securely delivering a set of messages to a group of clients over a broadcast erasure channel where each client is interested in a distinct message. Each client is able to obtain its own message but not the others'. In the proposed method the messages are combined together using a special variant of random linear network coding. Each client is provided with a private set of decoding coefficients to decode its own message. Our method provides security for the transmission sessions against computational brute-force attacks and also weakly security in information theoretic sense. As the broadcast channel is assumed to be erroneous, the missing coded packets should be recovered in some way. We consider two different scenarios. In the first scenario the missing packets are retransmitted by the base station (centralized). In the second scenario the clients cooperate with each other by exchanging packets (decentralized). In both scenarios, network coding techniques are exploited to increase the total throughput. For the case of centralized retransmissions we provide an analytical approximation for the throughput performance of instantly decodable network coded (IDNC) retransmissions as well as numerical experiments. For the decentralized scenario, we propose a new IDNC based retransmission method where its performance is evaluated via simulations and analytical approximation. Application of this method is not limited to our special problem and can be generalized to a new class of problems introduced in this paper as the cooperative index coding problem

    Delivery Time Reduction for Order-Constrained Applications using Binary Network Codes

    Full text link
    Consider a radio access network wherein a base-station is required to deliver a set of order-constrained messages to a set of users over independent erasure channels. This paper studies the delivery time reduction problem using instantly decodable network coding (IDNC). Motivated by time-critical and order-constrained applications, the delivery time is defined, at each transmission, as the number of undelivered messages. The delivery time minimization problem being computationally intractable, most of the existing literature on IDNC propose sub-optimal online solutions. This paper suggests a novel method for solving the problem by introducing the delivery delay as a measure of distance to optimality. An expression characterizing the delivery time using the delivery delay is derived, allowing the approximation of the delivery time minimization problem by an optimization problem involving the delivery delay. The problem is, then, formulated as a maximum weight clique selection problem over the IDNC graph wherein the weight of each vertex reflects its corresponding user and message's delay. Simulation results suggest that the proposed solution achieves lower delivery and completion times as compared to the best-known heuristics for delivery time reduction

    Delay Minimization for Instantly Decodable Network Coding in Persistent Channels with Feedback Intermittence

    Full text link
    In this paper, we consider the problem of minimizing the multicast decoding delay of generalized instantly decodable network coding (G-IDNC) over persistent forward and feedback erasure channels with feedback intermittence. In such an environment, the sender does not always receive acknowledgement from the receivers after each transmission. Moreover, both the forward and feedback channels are subject to persistent erasures, which can be modelled by a two state (good and bad states) Markov chain known as Gilbert-Elliott channel (GEC). Due to such feedback imperfections, the sender is unable to determine subsequent instantly decodable packets combination for all receivers. Given this harsh channel and feedback model, we first derive expressions for the probability distributions of decoding delay increments and then employ these expressions in formulating the minimum decoding problem in such environment as a maximum weight clique problem in the G-IDNC graph. We also show that the problem formulations in simpler channel and feedback models are special cases of our generalized formulation. Since this problem is NP-hard, we design a greedy algorithm to solve it and compare it to blind approaches proposed in literature. Through extensive simulations, our adaptive algorithm is shown to outperform the blind approaches in all situations and to achieve significant improvement in the decoding delay, especially when the channel is highly persisten
    • …
    corecore