26 research outputs found

    On Taking Square Roots without Quadratic Nonresidues over Finite Fields

    Full text link
    We present a novel idea to compute square roots over finite fields, without being given any quadratic nonresidue, and without assuming any unproven hypothesis. The algorithm is deterministic and the proof is elementary. In some cases, the square root algorithm runs in O~(log2q)\tilde{O}(\log^2 q) bit operations over finite fields with qq elements. As an application, we construct a deterministic primality proving algorithm, which runs in O~(log3N)\tilde{O}(\log^3 N) for some integers NN.Comment: 14 page

    Structure computation and discrete logarithms in finite abelian p-groups

    Full text link
    We present a generic algorithm for computing discrete logarithms in a finite abelian p-group H, improving the Pohlig-Hellman algorithm and its generalization to noncyclic groups by Teske. We then give a direct method to compute a basis for H without using a relation matrix. The problem of computing a basis for some or all of the Sylow p-subgroups of an arbitrary finite abelian group G is addressed, yielding a Monte Carlo algorithm to compute the structure of G using O(|G|^0.5) group operations. These results also improve generic algorithms for extracting pth roots in G.Comment: 23 pages, minor edit

    Identifying supersingular elliptic curves

    Full text link
    Given an elliptic curve E over a field of positive characteristic p, we consider how to efficiently determine whether E is ordinary or supersingular. We analyze the complexity of several existing algorithms and then present a new approach that exploits structural differences between ordinary and supersingular isogeny graphs. This yields a simple algorithm that, given E and a suitable non-residue in F_p^2, determines the supersingularity of E in O(n^3 log^2 n) time and O(n) space, where n=O(log p). Both these complexity bounds are significant improvements over existing methods, as we demonstrate with some practical computations.Comment: corrected a typo, 10 page
    corecore