22 research outputs found

    Generalized Subspace Subcodes in the Rank Metric

    Full text link
    Rank-metric codes were studied by E. Gabidulin in 1985 after a brief introduction by Delsarte in 1978 as an equivalent of Reed-Solomon codes, but based on linearized polynomials. They have found applications in many areas, including linear network coding and space-time coding. They are also used in cryptography to reduce the size of the keys compared to Hamming metric codes at the same level of security. However, some families of rank-metric codes suffer from structural attacks due to the strong algebraic structure from which they are defined. It therefore becomes interesting to find new code families in order to address these questions in the landscape of rank-metric codes. \par In this paper, we provide a generalization of Subspace Subcodes in Rank metric introduced by Gabidulin and Loidreau. We also characterize this family by giving an algorithm which allows to have its generator and parity-check matrices based on the associated extended codes. We have also studied the specific case of Gabidulin codes whose underlying decoding algorithms are known. Bounds for the cardinalities of these codes, both in the general case and in the case of Gabidulin codes, are also provided

    Design, optimization and Real Time implementation of a new Embedded Chien Search Block for Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes on FPGA Board

    Get PDF
    The development of error correcting codes has been a major concern for communications systems. Therefore, RS and BCH (Reed-Solomon and Bose, Ray-Chaudhuri and Hocquenghem) are effective methods to improve the quality of digital transmission. In this paper a new algorithm of Chien Search block for embedded systems is proposed. This algorithm is based on a factorization of error locator polynomial. i.e, we can minimize an important number of logic gates and hardware resources using the FPGA card. Consequently, it reduces the power consumption with a percentage which can reach 40 % compared to the basic RS and BCH decoder. The proposed system is designed, simulated using the hardware description language (HDL) and Quartus development software. Also, the performance of the designed embedded Chien search block for decoder RS\BCH (255, 239) has been successfully verified by implementation on FPGA board

    Expanded Gabidulin Codes and Their Application to Cryptography

    Get PDF
    This paper presents a new family of linear codes, namely the expanded Gabidulin codes. Exploiting the existing fast decoder of Gabidulin codes, we propose an efficient algorithm to decode these new codes when the noise vector satisfies a certain condition. Furthermore, these new codes enjoy an excellent error-correcting capability because of the optimality of their parent Gabidulin codes. Based on different masking techniques, we give two encryption schemes by using expanded Gabidulin codes in the McEliece setting. According to our analysis, both of these two cryptosystems can resist the existing structural attacks. Our proposals have an obvious advantage in public-key representation without using the cyclic or quasi-cyclic structure compared to some other code-based cryptosystems

    Fast Decoding of Interleaved Linearized Reed-Solomon Codes and Variants

    Full text link
    We construct s-interleaved linearized Reed-Solomon (ILRS) codes and variants and propose efficient decoding schemes that can correct errors beyond the unique decoding radius in the sum-rank, sum-subspace and skew metric. The proposed interpolation-based scheme for ILRS codes can be used as a list decoder or as a probabilistic unique decoder that corrects errors of sum-rank up to t≀ss+1(n−k)t\leq\frac{s}{s+1}(n-k), where s is the interleaving order, n the length and k the dimension of the code. Upper bounds on the list size and the decoding failure probability are given where the latter is based on a novel Loidreau-Overbeck-like decoder for ILRS codes. The results are extended to decoding of lifted interleaved linearized Reed-Solomon (LILRS) codes in the sum-subspace metric and interleaved skew Reed-Solomon (ISRS) codes in the skew metric. We generalize fast minimal approximant basis interpolation techniques to obtain efficient decoding schemes for ILRS codes (and variants) with subquadratic complexity in the code length. Up to our knowledge, the presented decoding schemes are the first being able to correct errors beyond the unique decoding region in the sum-rank, sum-subspace and skew metric. The results for the proposed decoding schemes are validated via Monte Carlo simulations.Comment: submitted to IEEE Transactions on Information Theory, 57 pages, 10 figure

    On McEliece type cryptosystems using self-dual codes with large minimum weight

    Get PDF
    One of the finalists in the NIST post-quantum cryptography competition is the Classic McEliece cryptosystem. Unfortunately, its public key size represents a practical limitation. One option to address this problem is to use different families of error-correcting codes. Most of such attempts failed as those cryptosystems were proved not secure. In this paper, we propose a McEliece type cryptosystem using high minimum distance self-dual codes and punctured codes derived from them. To the best of our knowledge, such codes have not been implemented in a code-based cryptosystem until now. For the 80-bit security case, we construct an optimal self-dual code of length 1\,064, which, as far as we are aware, was not presented before. Compared to the original McEliece cryptosystem, this allows us to reduce the key size by about 38.5\%

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF
    corecore