15,969 research outputs found

    Sparse Signal Recovery under Poisson Statistics

    Full text link
    We are motivated by problems that arise in a number of applications such as Online Marketing and explosives detection, where the observations are usually modeled using Poisson statistics. We model each observation as a Poisson random variable whose mean is a sparse linear superposition of known patterns. Unlike many conventional problems observations here are not identically distributed since they are associated with different sensing modalities. We analyze the performance of a Maximum Likelihood (ML) decoder, which for our Poisson setting involves a non-linear optimization but yet is computationally tractable. We derive fundamental sample complexity bounds for sparse recovery when the measurements are contaminated with Poisson noise. In contrast to the least-squares linear regression setting with Gaussian noise, we observe that in addition to sparsity, the scale of the parameters also fundamentally impacts sample complexity. We introduce a novel notion of Restricted Likelihood Perturbation (RLP), to jointly account for scale and sparsity. We derive sample complexity bounds for â„“1\ell_1 regularized ML estimators in terms of RLP and further specialize these results for deterministic and random sensing matrix designs.Comment: 13 pages, 11 figures, 2 tables, submitted to IEEE Transactions on Signal Processin

    OMP-type Algorithm with Structured Sparsity Patterns for Multipath Radar Signals

    Get PDF
    A transmitted, unknown radar signal is observed at the receiver through more than one path in additive noise. The aim is to recover the waveform of the intercepted signal and to simultaneously estimate the direction of arrival (DOA). We propose an approach exploiting the parsimonious time-frequency representation of the signal by applying a new OMP-type algorithm for structured sparsity patterns. An important issue is the scalability of the proposed algorithm since high-dimensional models shall be used for radar signals. Monte-Carlo simulations for modulated signals illustrate the good performance of the method even for low signal-to-noise ratios and a gain of 20 dB for the DOA estimation compared to some elementary method
    • …
    corecore