362 research outputs found

    On Sparse Vector Recovery Performance in Structurally Orthogonal Matrices via LASSO

    Get PDF
    In this paper, we consider the compressed sensing problem of reconstructing a sparse signal from an undersampled set of noisy linear measurements. The regularized least squares or least absolute shrinkage and selection operator (LASSO) formulation is used for signal estimation. The measurement matrix is assumed to be constructed by concatenating several randomly orthogonal bases, which we refer to as structurally orthogonal matrices. Such measurement matrix is highly relevant to large-scale compressive sensing applications because it facilitates rapid computation and parallel processing. Using the replica method in statistical physics, we derive the mean-squared-error (MSE) formula of reconstruction over the structurally orthogonal matrix in the large-system regime. Extensive numerical experiments are provided to verify the analytical result. We then consider the analytical result to investigate the MSE behaviors of the LASSO over the structurally orthogonal matrix, with an emphasis on performance comparisons with matrices with independent and identically distributed (i.i.d.) Gaussian entries. We find that structurally orthogonal matrices are at least as good as their i.i.d. Gaussian counterparts. Thus, the use of structurally orthogonal matrices is attractive in practical applications

    Tensor decomposition with generalized lasso penalties

    Full text link
    We present an approach for penalized tensor decomposition (PTD) that estimates smoothly varying latent factors in multi-way data. This generalizes existing work on sparse tensor decomposition and penalized matrix decompositions, in a manner parallel to the generalized lasso for regression and smoothing problems. Our approach presents many nontrivial challenges at the intersection of modeling and computation, which are studied in detail. An efficient coordinate-wise optimization algorithm for (PTD) is presented, and its convergence properties are characterized. The method is applied both to simulated data and real data on flu hospitalizations in Texas. These results show that our penalized tensor decomposition can offer major improvements on existing methods for analyzing multi-way data that exhibit smooth spatial or temporal features

    Projection-Based and Look Ahead Strategies for Atom Selection

    Full text link
    In this paper, we improve iterative greedy search algorithms in which atoms are selected serially over iterations, i.e., one-by-one over iterations. For serial atom selection, we devise two new schemes to select an atom from a set of potential atoms in each iteration. The two new schemes lead to two new algorithms. For both the algorithms, in each iteration, the set of potential atoms is found using a standard matched filter. In case of the first scheme, we propose an orthogonal projection strategy that selects an atom from the set of potential atoms. Then, for the second scheme, we propose a look ahead strategy such that the selection of an atom in the current iteration has an effect on the future iterations. The use of look ahead strategy requires a higher computational resource. To achieve a trade-off between performance and complexity, we use the two new schemes in cascade and develop a third new algorithm. Through experimental evaluations, we compare the proposed algorithms with existing greedy search and convex relaxation algorithms.Comment: sparsity, compressive sensing; IEEE Trans on Signal Processing 201

    Isotropically Random Orthogonal Matrices: Performance of LASSO and Minimum Conic Singular Values

    Full text link
    Recently, the precise performance of the Generalized LASSO algorithm for recovering structured signals from compressed noisy measurements, obtained via i.i.d. Gaussian matrices, has been characterized. The analysis is based on a framework introduced by Stojnic and heavily relies on the use of Gordon's Gaussian min-max theorem (GMT), a comparison principle on Gaussian processes. As a result, corresponding characterizations for other ensembles of measurement matrices have not been developed. In this work, we analyze the corresponding performance of the ensemble of isotropically random orthogonal (i.r.o.) measurements. We consider the constrained version of the Generalized LASSO and derive a sharp characterization of its normalized squared error in the large-system limit. When compared to its Gaussian counterpart, our result analytically confirms the superiority in performance of the i.r.o. ensemble. Our second result, derives an asymptotic lower bound on the minimum conic singular values of i.r.o. matrices. This bound is larger than the corresponding bound on Gaussian matrices. To prove our results we express i.r.o. matrices in terms of Gaussians and show that, with some modifications, the GMT framework is still applicable
    corecore