40 research outputs found

    Improving low latency applications for reconfigurable devices

    Get PDF
    This thesis seeks to improve low latency application performance via architectural improvements in reconfigurable devices. This is achieved by improving resource utilisation and access, and by exploiting the different environments within which reconfigurable devices are deployed. Our first contribution leverages devices deployed at the network level to enable the low latency processing of financial market data feeds. Financial exchanges transmit messages via two identical data feeds to reduce the chance of message loss. We present an approach to arbitrate these redundant feeds at the network level using a Field-Programmable Gate Array (FPGA). With support for any messaging protocol, we evaluate our design using the NASDAQ TotalView-ITCH, OPRA, and ARCA data feed protocols, and provide two simultaneous outputs: one prioritising low latency, and one prioritising high reliability with three dynamically configurable windowing methods. Our second contribution is a new ring-based architecture for low latency, parallel access to FPGA memory. Traditional FPGA memory is formed by grouping block memories (BRAMs) together and accessing them as a single device. Our architecture accesses these BRAMs independently and in parallel. Targeting memory-based computing, which stores pre-computed function results in memory, we benefit low latency applications that rely on: highly-complex functions; iterative computation; or many parallel accesses to a shared resource. We assess square root, power, trigonometric, and hyperbolic functions within the FPGA, and provide a tool to convert Python functions to our new architecture. Our third contribution extends the ring-based architecture to support any FPGA processing element. We unify E heterogeneous processing elements within compute pools, with each element implementing the same function, and the pool serving D parallel function calls. Our implementation-agnostic approach supports processing elements with different latencies, implementations, and pipeline lengths, as well as non-deterministic latencies. Compute pools evenly balance access to processing elements across the entire application, and are evaluated by implementing eight different neural network activation functions within an FPGA.Open Acces

    FPGA-based high-performance neural network acceleration

    Full text link
    In the last ten years, Artificial Intelligence through Deep Neural Networks (DNNs) has penetrated virtually every aspect of science, technology, and business. Advances are rapid with thousands of papers being published annually. Many types of DNNs have been and continue to be developed -- in this thesis, we address Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs) -- each with a different set of target applications and implementation challenges. The overall problem for all of these Neural Networks (NNs) is that their target applications generally pose stringent constraints on latency and throughput, but also have strict accuracy requirements. Much research has therefore gone into all aspects of improving NN quality and performance: algorithms, code optimization, acceleration with GPUs, and acceleration with hardware, both dedicated ASICs and off-the-shelf FPGAs. In this thesis, we concentrate on the last of these approaches. There have been many previous efforts in creating hardware to accelerate NNs. The problem designers face is that optimal NN models typically have significant irregularities, making them hardware unfriendly. One commonly used approach is to train NN models to follow regular computation and data patterns. This approach, however, can hurt the models' accuracy or lead to models with non-negligible redundancies. This dissertation takes a different approach. Instead of regularizing the model, we create architectures friendly to irregular models. Our thesis is that high-accuracy and high-performance NN inference and training can be achieved by creating a series of novel irregularity-aware architectures for Field-Programmable Gate Arrays (FPGAs). In four different studies on four different NN types, we find that this approach results in speedups of 2.1x to 3255x compared with carefully selected prior art; for inference, there is no change in accuracy. The bulk of this dissertation revolves around these studies, the various workload balancing techniques, and the resulting NN acceleration architectures. In particular, we propose four different architectures to handle, respectively, data structure level, operation level, bit level, and model level irregularities. At the data structure level, we propose AWB-GCN, which uses runtime workload rebalancing to handle Sparse Matrices Multiplications (SpMM) on extremely sparse and unbalanced input. With GNN inference as a case study, AWB-GCN achieves over 90% system efficiency, guarantees efficient off-chip memory access, and provides considerable speedups over CPUs (3255x), GPUs (80x), and a prior ASIC accelerator (5.1x). At the operation level, we propose O3BNN-R, which can detect redundant operations and prune them at run time. This works even for those that are highly data-dependent and unpredictable. With Binarized NNs (BNNs) as a case study, O3BNN-R can prune over 30% of the operations, without any accuracy loss, yielding speedups over state-of-the-art implementations on CPUs (1122x), GPUs (2.3x), and FPGAs (2.1x). At the bit level, we propose CQNN. CQNN embeds a Coarse-Grained Reconfigurable Architecture (CGRA) which can be programmed at runtime to support NN functions with various data-width requirements. Results show that CQNN can deliver us-level Quantized NN (QNN) inference. At the model level, we propose FPDeep, especially for training. In order to address model-level irregularity, FPDeep uses a novel model partitioning schemes to balance workload and storage among nodes. By using a hybrid of model and layer parallelism to train DNNs, FPDeep avoids the large gap that commonly occurs between training and testing accuracy due to the improper convergence to sharp minimizers (caused by large training batches). Results show that FPDeep provides scalable, fast, and accurate training and leads to 6.6x higher energy efficiency than GPUs

    Tools for efficient Deep Learning

    Get PDF
    In the era of Deep Learning (DL), there is a fast-growing demand for building and deploying Deep Neural Networks (DNNs) on various platforms. This thesis proposes five tools to address the challenges for designing DNNs that are efficient in time, in resources and in power consumption. We first present Aegis and SPGC to address the challenges in improving the memory efficiency of DL training and inference. Aegis makes mixed precision training (MPT) stabler by layer-wise gradient scaling. Empirical experiments show that Aegis can improve MPT accuracy by at most 4\%. SPGC focuses on structured pruning: replacing standard convolution with group convolution (GConv) to avoid irregular sparsity. SPGC formulates GConv pruning as a channel permutation problem and proposes a novel heuristic polynomial-time algorithm. Common DNNs pruned by SPGC have maximally 1\% higher accuracy than prior work. This thesis also addresses the challenges lying in the gap between DNN descriptions and executables by Polygeist for software and POLSCA for hardware. Many novel techniques, e.g. statement splitting and memory partitioning, are explored and used to expand polyhedral optimisation. Polygeist can speed up software execution in sequential and parallel by 2.53 and 9.47 times on Polybench/C. POLSCA achieves 1.5 times speedup over hardware designs directly generated from high-level synthesis on Polybench/C. Moreover, this thesis presents Deacon, a framework that generates FPGA-based DNN accelerators of streaming architectures with advanced pipelining techniques to address the challenges from heterogeneous convolution and residual connections. Deacon provides fine-grained pipelining, graph-level optimisation, and heuristic exploration by graph colouring. Compared with prior designs, Deacon shows resource/power consumption efficiency improvement of 1.2x/3.5x for MobileNets and 1.0x/2.8x for SqueezeNets. All these tools are open source, some of which have already gained public engagement. We believe they can make efficient deep learning applications easier to build and deploy.Open Acces

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Políticas de Copyright de Publicações Científicas em Repositórios Institucionais: O Caso do INESC TEC

    Get PDF
    A progressiva transformação das práticas científicas, impulsionada pelo desenvolvimento das novas Tecnologias de Informação e Comunicação (TIC), têm possibilitado aumentar o acesso à informação, caminhando gradualmente para uma abertura do ciclo de pesquisa. Isto permitirá resolver a longo prazo uma adversidade que se tem colocado aos investigadores, que passa pela existência de barreiras que limitam as condições de acesso, sejam estas geográficas ou financeiras. Apesar da produção científica ser dominada, maioritariamente, por grandes editoras comerciais, estando sujeita às regras por estas impostas, o Movimento do Acesso Aberto cuja primeira declaração pública, a Declaração de Budapeste (BOAI), é de 2002, vem propor alterações significativas que beneficiam os autores e os leitores. Este Movimento vem a ganhar importância em Portugal desde 2003, com a constituição do primeiro repositório institucional a nível nacional. Os repositórios institucionais surgiram como uma ferramenta de divulgação da produção científica de uma instituição, com o intuito de permitir abrir aos resultados da investigação, quer antes da publicação e do próprio processo de arbitragem (preprint), quer depois (postprint), e, consequentemente, aumentar a visibilidade do trabalho desenvolvido por um investigador e a respetiva instituição. O estudo apresentado, que passou por uma análise das políticas de copyright das publicações científicas mais relevantes do INESC TEC, permitiu não só perceber que as editoras adotam cada vez mais políticas que possibilitam o auto-arquivo das publicações em repositórios institucionais, como também que existe todo um trabalho de sensibilização a percorrer, não só para os investigadores, como para a instituição e toda a sociedade. A produção de um conjunto de recomendações, que passam pela implementação de uma política institucional que incentive o auto-arquivo das publicações desenvolvidas no âmbito institucional no repositório, serve como mote para uma maior valorização da produção científica do INESC TEC.The progressive transformation of scientific practices, driven by the development of new Information and Communication Technologies (ICT), which made it possible to increase access to information, gradually moving towards an opening of the research cycle. This opening makes it possible to resolve, in the long term, the adversity that has been placed on researchers, which involves the existence of barriers that limit access conditions, whether geographical or financial. Although large commercial publishers predominantly dominate scientific production and subject it to the rules imposed by them, the Open Access movement whose first public declaration, the Budapest Declaration (BOAI), was in 2002, proposes significant changes that benefit the authors and the readers. This Movement has gained importance in Portugal since 2003, with the constitution of the first institutional repository at the national level. Institutional repositories have emerged as a tool for disseminating the scientific production of an institution to open the results of the research, both before publication and the preprint process and postprint, increase the visibility of work done by an investigator and his or her institution. The present study, which underwent an analysis of the copyright policies of INESC TEC most relevant scientific publications, allowed not only to realize that publishers are increasingly adopting policies that make it possible to self-archive publications in institutional repositories, all the work of raising awareness, not only for researchers but also for the institution and the whole society. The production of a set of recommendations, which go through the implementation of an institutional policy that encourages the self-archiving of the publications developed in the institutional scope in the repository, serves as a motto for a greater appreciation of the scientific production of INESC TEC

    Selected On-Demand Medical Applications of 3D-Printing for Long-Duration Manned Space Missions

    Get PDF
    Recent technological advances in the area of Additive Manufacturing (i.e. 3D printing) allow for exploration of their use within long-duration manned space missions. Among the many potential application domains, medical and dental fabrication in support of crew health is of interest to NASA’s Advanced Exploration Systems directorate. A classification of medical events with their associated response timeline discern between those applications where current 3D printing technologies can provide adequate support. Products and devices that require on-demand fabrication (due to the high level of personal customization) but that can wait for a reasonable (e.g. few hours) fabrication time are the most promising areas. Among these non-emergency, on-demand applications, two were identified for further investigation: dental health and pharmaceutical drugs. A discussion on the challenges presented by a microgravity operational environment on these technologies is provided
    corecore