7 research outputs found

    The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Categorical combinators

    Get PDF
    Our main aim is to present the connection between λ-calculus and Cartesian closed categories both in an untyped and purely syntactic setting. More specifically we establish a syntactic equivalence theorem between what we call categorical combinatory logic and λ-calculus with explicit products and projections, with β and η-rules as well as with surjective pairing. “Combinatory logic” is of course inspired by Curry's combinatory logic, based on the well-known S, K, I. Our combinatory logic is “categorical” because its combinators and rules are obtained by extracting untyped information from Cartesian closed categories (looking at arrows only, thus forgetting about objects). Compiling λ-calculus into these combinators happens to be natural and provokes only n log n code expansion. Moreover categorical combinatory logic is entirely faithful to β-reduction where combinatory logic needs additional rather complex and unnatural axioms to be. The connection easily extends to the corresponding typed calculi, where typed categorical combinatory logic is a free Cartesian closed category where the notion of terminal object is replaced by the explicit manipulation of applying (a function to its argument) and coupling (arguments to build datas in products). Our syntactic equivalences induce equivalences at the model level. The paper is intended as a mathematical foundation for developing implementations of functional programming languages based on a “categorical abstract machine,” as developed in a companion paper (Cousineau, Curien, and Mauny, in “Proceedings, ACM Conf. on Functional Programming Languages and Computer Architecture,” Nancy, 1985)

    On Simple Goedel Numberings and Translations

    Full text link
    In this paper we consider Goedel numberings (viewed as simple models for programming languages) into which all other Goedel numberings can be translated very easily. Several such classes of Goedel numberings are defined and their properties are investigated. We also compare these classes of Goedel numberings to optimal Goedel numberings and show that translation into optimal Goedel numberings can be computationally arbitrarily complex
    corecore