2 research outputs found

    Post-silicon failing-test generation through evolutionary computation

    Get PDF
    The incessant progress in manufacturing technology is posing new challenges to microprocessor designers. Several activities that were originally supposed to be part of the pre-silicon design phase are migrating after tape-out, when the first silicon prototypes are available. The paper describes a post-silicon methodology for devising functional failing tests. Therefore, suited to be exploited by microprocessor producer to detect, analyze and debug speed paths during verification, speed-stepping, or other critical activities. The proposed methodology is based on an evolutionary algorithm and exploits a versatile toolkit named µGP. The paper describes how to take into account complex hardware characteristics and architectural details of such complex devices. The experimental evaluation clearly demonstrates the potential of this line of researc

    A Novel and Practical Control Scheme for Inter-Clock At-Speed Testing

    Get PDF
    The quality of at-speed testing is being severely challenged by the problem that an inter-clock logic block existing between two synchronous clocks is not efficiently tested or totally ignored due to complex test control. This paper addresses the problem with a novel inter-clock at-speed test control scheme, featuring a compact and robust on-chip inter-clock enable generator design. The new scheme can generate inter-clock at-speed test clocks from PLLs, and is feasible for both ATE-based scan testing and logic BIST. Successful applications to industrial circuits have proven its effectiveness in improving the quality of at-speed testing.2006 IEEE International Test Conference, 22-27 October 2006, Santa Clara, CA, US
    corecore