3,705 research outputs found

    Improving bounds on packing densities of 4-point permutations

    Full text link
    We consolidate what is currently known about packing densities of 4-point permutations and in the process improve the lower bounds for the packing densities of 1324 and 1342. We also provide rigorous upper bounds for the packing densities of 1324, 1342, and 2413. All our bounds are within 10410^{-4} of the true packing densities. Together with the known bounds, this gives us a fairly complete picture of all 4-point packing densities. We also provide new upper bounds for several small permutations of length at least five. Our main tool for the upper bounds is the framework of flag algebras introduced by Razborov in 2007.Comment: journal style, 18 page

    Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking

    Get PDF
    Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing a canonical form for a graph is computationally expensive. Whether computing a canonical representation for states and reducing the state space is more efficient than using canonical hashcodes for states and comparing states one-to-one is not a priori clear. In this paper these approaches to isomorphism reduction are described and a preliminary comparison is presented for checking isomorphism of pairs of graphs. An existing algorithm that does not compute a canonical form performs better that tools that do for graphs that are used in graph-based model checking. Computing canonical forms seems to scale better for larger graphs

    Enumeration of three term arithmetic progressions in fixed density sets

    Full text link
    Additive combinatorics is built around the famous theorem by Szemer\'edi which asserts existence of arithmetic progressions of any length among the integers. There exist several different proofs of the theorem based on very different techniques. Szemer\'edi's theorem is an existence statement, whereas the ultimate goal in combinatorics is always to make enumeration statements. In this article we develop new methods based on real algebraic geometry to obtain several quantitative statements on the number of arithmetic progressions in fixed density sets. We further discuss the possibility of a generalization of Szemer\'edi's theorem using methods from real algebraic geometry.Comment: 62 pages. Update v2: Corrected some references. Update v3: Incorporated feedbac

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results
    corecore