2,786 research outputs found

    Key Dependent Message Security and Receiver Selective Opening Security for Identity-Based Encryption

    Get PDF
    We construct two identity-based encryption (IBE) schemes. The first one is IBE satisfying key dependent message (KDM) security for user secret keys. The second one is IBE satisfying simulation-based receiver selective opening (RSO) security. Both schemes are secure against adaptive-ID attacks and do not have any a-priori bound on the number of challenge identities queried by adversaries in the security games. They are the first constructions of IBE satisfying such levels of security. Our constructions of IBE are very simple. We construct our KDM secure IBE by transforming KDM secure secret-key encryption using IBE satisfying only ordinary indistinguishability against adaptive-ID attacks (IND-ID-CPA security). Our simulation-based RSO secure IBE is based only on IND-ID-CPA secure IBE. We also demonstrate that our construction technique for KDM secure IBE is used to construct KDM secure public-key encryption. More precisely, we show how to construct KDM secure public-key encryption from KDM secure secret-key encryption and public-key encryption satisfying only ordinary indistinguishability against chosen plaintext attacks

    Encryption schemes secure against chosen-ciphertext selective opening attacks

    Get PDF
    Imagine many small devices send data to a single receiver, encrypted using the receiver's public key. Assume an adversary that has the power to adaptively corrupt a subset of these devices. Given the information obtained from these corruptions, do the ciphertexts from uncorrupted devices remain secure? Recent results suggest that conventional security notions for encryption schemes (like IND-CCA security) do not suffice in this setting. To fill this gap, the notion of security against selective-opening attacks (SOA security) has been introduced. It has been shown that lossy encryption implies SOA security against a passive, i.e., only eavesdropping and corrupting, adversary (SO-CPA). However, the known results on SOA security against an active adversary (SO-CCA) are rather limited. Namely, while there exist feasibility results, the (time and space) complexity of currently known SO-C

    Bi-Deniable Inner Product Encryption from LWE

    Get PDF
    Deniable encryption (Canetti et al. CRYPTO \u2797) is an intriguing primitive that provides a security guarantee against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and security against selective opening attacks. Despite its conceptual usefulness, our understanding of how to construct deniable primitives under standard assumptions is restricted. In particular, from standard assumptions such as Learning with Errors (LWE), we have only multi-distributional or non-negligible advantage deniable encryption schemes, whereas with the much stronger assumption of indistinguishable obfuscation, we can obtain at least fully-secure sender-deniable PKE and computation. How to achieve deniability for other more advanced encryption schemes under standard assumptions remains an interesting open question. In this work, we construct a bi-deniable inner product encryption (IPE) in the multi-distributional model without relying on obfuscation as a black box. Our techniques involve new ways of manipulating Gaussian noise, and lead to a significantly tighter analysis of noise growth in Dual Regev type encryption schemes. We hope these ideas can give insight into achieving deniability and related properties for further, advanced cryptographic constructions under standard assumptions

    Encryption Schemes Secure against Chosen-Ciphertext Selective Opening Attacks

    Get PDF
    textabstractImagine many small devices send data to a single receiver, encrypted using the receiver's public key. Assume an adversary that has the power to adaptively corrupt a subset of these devices. Given the information obtained from these corruptions, do the ciphertexts from uncorrupted devices remain secure? Recent results suggest that conventional security notions for encryption schemes (like IND-CCA security) do not suffice in this setting. To fill this gap, the notion of security against selective-opening attacks (SOA security) has been introduced. It has been shown that lossy encryption implies SOA security against a passive, i.e., only eavesdropping and corrupting, adversary (SO-CPA). However, the known results on SOA security against an active adversary (SO-CCA) are rather limited. Namely, while there exist feasibility results, the (time and space) complexity of currently known SO-CCA secure schemes depends on the number of devices in the setting above. In this contribution, we devise a new solution to the selective opening problem that does not build on lossy encryption. Instead, we combine techniques from non-committing encryption and hash proof systems with a new technique (dubbed ``cross-authentication codes'') to glue several ciphertext parts together. The result is a rather practical SO-CCA secure public-key encryption scheme that does not suffer from the efficiency drawbacks of known schemes. Since we build upon hash proof systems, our scheme can be instantiated using standard number-theoretic assumptions such as decisional Diffie-Hellman (DDH), decisional composite residuosity (DCR), and quadratic residuosity (QR). Besides, we construct a conceptually very simple and comparatively efficient SO-CPA secure scheme from (slightly enhanced) trapdoor one-way permutations. We stress that our schemes are completely independent of the number of challenge ciphertexts, and we do not make assumptions about the underlying message distribution (beyond being efficiently samplable). In particular, we do not assume efficient conditional re-samplability of the message distribution. Hence, our schemes are secure in arbitrary settings, even if it is not known in advance how many ciphertexts might be considered for corruptions

    Constructions Secure against Receiver Selective Opening and Chosen Ciphertext Attacks

    Get PDF
    In this paper we study public key encryption schemes of indistinguishability security against receiver selective opening (IND-RSO) attacks, where the attacker can corrupt some receivers and get the corresponding secret keys in the multi-party setting. Concretely: -We present a general construction of RSO security against chosen ciphertext attacks (RSO-CCA) by combining any RSO secure scheme against chosen plaintext attacks (RSO-CPA) with any regular CCA secure scheme, along with an appropriate non-interactive zero-knowledge proof. -We show that the leakage-resistant construction given by Hazay \emph{et al.} in Eurocrypt 2013 from weak hash proof system (wHPS) is RSO-CPA secure. -We further show that the CCA secure construction given by Cramer and Shoup in Eurocrypt 2002 based on the universal HPS is RSO-CCA secure, hence obtain a more efficient paradigm for RSO-CCA security

    SO-CCA Secure PKE in the Quantum Random Oracle Model or the Quantum Ideal Cipher Model

    Get PDF
    Selective opening (SO) security is one of the most important security notions of public key encryption (PKE) in a multi-user setting. Even though messages and random coins used in some ciphertexts are leaked, SO security guarantees the confidentiality of the other ciphertexts. Actually, it is shown that there exist PKE schemes which meet the standard security such as indistinguishability against chosen ciphertext attacks (IND-CCA security) but do not meet SO security against chosen ciphertext attacks. Hence, it is important to consider SO security in the multi-user setting. On the other hand, many researchers have studied cryptosystems in the security model where adversaries can submit quantum superposition queries (i.e., quantum queries) to oracles. In particular, IND-CCA secure PKE and KEM schemes in the quantum random oracle model have been intensively studied so far. In this paper, we show that two kinds of constructions of hybrid encryption schemes meet simulation-based SO security against chosen ciphertext attacks (SIM-SO-CCA security) in the quantum random oracle model or the quantum ideal cipher model. The first scheme is constructed from any IND-CCA secure KEM and any simulatable data encapsulation mechanism (DEM). The second one is constructed from any IND-CCA secure KEM based on Fujisaki-Okamoto transformation and any strongly unforgeable message authentication code (MAC). We can apply any IND-CCA secure KEM scheme to the first one if the underlying DEM scheme meets simulatability, whereas we can apply strongly unforgeable MAC to the second one if the underlying KEM is based on Fujisaki-Okamoto transformation

    Server-Aided Revocable Predicate Encryption: Formalization and Lattice-Based Instantiation

    Full text link
    Efficient user revocation is a necessary but challenging problem in many multi-user cryptosystems. Among known approaches, server-aided revocation yields a promising solution, because it allows to outsource the major workloads of system users to a computationally powerful third party, called the server, whose only requirement is to carry out the computations correctly. Such a revocation mechanism was considered in the settings of identity-based encryption and attribute-based encryption by Qin et al. (ESORICS 2015) and Cui et al. (ESORICS 2016), respectively. In this work, we consider the server-aided revocation mechanism in the more elaborate setting of predicate encryption (PE). The latter, introduced by Katz, Sahai, and Waters (EUROCRYPT 2008), provides fine-grained and role-based access to encrypted data and can be viewed as a generalization of identity-based and attribute-based encryption. Our contribution is two-fold. First, we formalize the model of server-aided revocable predicate encryption (SR-PE), with rigorous definitions and security notions. Our model can be seen as a non-trivial adaptation of Cui et al.'s work into the PE context. Second, we put forward a lattice-based instantiation of SR-PE. The scheme employs the PE scheme of Agrawal, Freeman and Vaikuntanathan (ASIACRYPT 2011) and the complete subtree method of Naor, Naor, and Lotspiech (CRYPTO 2001) as the two main ingredients, which work smoothly together thanks to a few additional techniques. Our scheme is proven secure in the standard model (in a selective manner), based on the hardness of the Learning With Errors (LWE) problem.Comment: 24 page
    • …
    corecore