134 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Communication Architecture For Distributed Interactive Simulation (CADIS): Rationale Document Draft

    Get PDF
    Report on necessary communication system protocol data unit standards which must be accepted and adopted for supporting distributed interactive simulation

    Coding, Multicast and Cooperation for Cache-Enabled Heterogeneous Small Cell Networks

    Get PDF
    Caching at the wireless edge is a promising approach to dealing with massive content delivery in heterogeneous wireless networks, which have high demands on backhaul. In this paper, a typical cache-enabled small cell network under heterogeneous file and network settings is considered using maximum distance separable (MDS) codes for content restructuring. Unlike those in the literature considering online settings with the assumption of perfect user request information, we estimate the joint user requests using the file popularity information and aim to minimize the long-term average backhaul load for fetching content from external storage subject to the overall cache capacity constraint by optimizing the content placement in all the cells jointly. Both multicast-aware caching and cooperative caching schemes with optimal content placement are proposed. In order to combine the advantages of multicast content delivery and cooperative content sharing, a compound caching technique, which is referred to as multicast-aware cooperative caching, is then developed. For this technique, a greedy approach and a multicast-aware in-cluster cooperative approach are proposed for the small-scale networks and large-scale networks, respectively. Mathematical analysis and simulation results are presented to illustrate the advantages of MDS codes, multicast, and cooperation in terms of reducing the backhaul requirements for cache-enabled small cell networks

    Guidance Document Draft: Communication Architecture For Distributed Interactive Simulation (CADIS)

    Get PDF
    Report on necessary communication system protocol data unit standards which must be accepted and adopted for supporting distributed interactive simulation

    Computation in Multicast Networks: Function Alignment and Converse Theorems

    Full text link
    The classical problem in network coding theory considers communication over multicast networks. Multiple transmitters send independent messages to multiple receivers which decode the same set of messages. In this work, computation over multicast networks is considered: each receiver decodes an identical function of the original messages. For a countably infinite class of two-transmitter two-receiver single-hop linear deterministic networks, the computing capacity is characterized for a linear function (modulo-2 sum) of Bernoulli sources. Inspired by the geometric concept of interference alignment in networks, a new achievable coding scheme called function alignment is introduced. A new converse theorem is established that is tighter than cut-set based and genie-aided bounds. Computation (vs. communication) over multicast networks requires additional analysis to account for multiple receivers sharing a network's computational resources. We also develop a network decomposition theorem which identifies elementary parallel subnetworks that can constitute an original network without loss of optimality. The decomposition theorem provides a conceptually-simpler algebraic proof of achievability that generalizes to LL-transmitter LL-receiver networks.Comment: to appear in the IEEE Transactions on Information Theor
    • …
    corecore