20,228 research outputs found

    On Scaling Limits of Power Law Shot-noise Fields

    Full text link
    This article studies the scaling limit of a class of shot-noise fields defined on an independently marked stationary Poisson point process and with a power law response function. Under appropriate conditions, it is shown that the shot-noise field can be scaled suitably to have a α\alpha-stable limit, intensity of the underlying point process goes to infinity. It is also shown that the finite dimensional distributions of the limiting random field have i.i.d. stable random components. We hence propose to call this limte the α\alpha- stable white noise field. Analogous results are also obtained for the extremal shot-noise field which converges to a Fr\'{e}chet white noise field. Finally, these results are applied to the analysis of wireless networks.Comment: 17 pages, Typos are correcte

    Non-stationary self-similar Gaussian processes as scaling limits of power law shot noise processes and generalizations of fractional Brownian motion

    Full text link
    We study shot noise processes with Poisson arrivals and non-stationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: 1) the conditional variance functions of the noises have a power law and 2) the conditional noise distributions are piecewise. In both cases, the limit processes are self-similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self-similar Gaussian processes with non-stationary increments, via the time-domain integral representation, which are natural generalizations of fractional Brownian motions.Published versio

    Relevance of multiple-quasiparticle tunneling between edge states at \nu =p/(2np+1)

    Full text link
    We present an explanation for the anomalous behavior in tunneling conductance and noise through a point contact between edge states in the Jain series ν=p/(2np+1)\nu=p/(2np+1), for extremely weak-backscattering and low temperatures [Y.C. Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. {\bf{91}}, 216804 (2003)]. We consider edge states with neutral modes propagating at finite velocity, and we show that the activation of their dynamics causes the unexpected change in the temperature power-law of the conductance. Even more importantly, we demonstrate that multiple-quasiparticles tunneling at low energies becomes the most relevant process. This result will be used to explain the experimental data on current noise where tunneling particles have a charge that can reach pp times the single quasiparticle charge. In this paper we analyze the conductance and the shot noise to substantiate quantitatively the proposed scenario.Comment: 4 pages, 2 figure

    Current fluctuations near to the 2D superconductor-insulator quantum critical point

    Full text link
    Systems near to quantum critical points show universal scaling in their response functions. We consider whether this scaling is reflected in their fluctuations; namely in current-noise. Naive scaling predicts low-temperature Johnson noise crossing over to noise power Ez/(z+1)\propto E^{z/(z+1)} at strong electric fields. We study this crossover in the metallic state at the 2d z=1 superconductor/insulator quantum critical point. Using a Boltzmann-Langevin approach within a 1/N-expansion, we show that the current noise obeys a scaling form Sj=TΦ[T/Teff(E)]S_j=T \Phi[T/T_{eff}(E)] with TeffET_{eff} \propto \sqrt{E}. We recover Johnson noise in thermal equilibrium and SjES_j \propto \sqrt{E} at strong electric fields. The suppression from free carrier shot noise is due to strong correlations at the critical point. We discuss its interpretation in terms of a diverging carrier charge 1/E\propto 1/\sqrt{E} or as out-of-equilibrium Johnson noise with effective temperature E\propto \sqrt{E}.Comment: 5 page
    corecore