1,134 research outputs found

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin

    Complexity-Aware Scheduling for an LDPC Encoded C-RAN Uplink

    Full text link
    Centralized Radio Access Network (C-RAN) is a new paradigm for wireless networks that centralizes the signal processing in a computing cloud, allowing commodity computational resources to be pooled. While C-RAN improves utilization and efficiency, the computational load occasionally exceeds the available resources, creating a computational outage. This paper provides a mathematical characterization of the computational outage probability for low-density parity check (LDPC) codes, a common class of error-correcting codes. For tractability, a binary erasures channel is assumed. Using the concept of density evolution, the computational demand is determined for a given ensemble of codes as a function of the erasure probability. The analysis reveals a trade-off: aggressively signaling at a high rate stresses the computing pool, while conservatively backing-off the rate can avoid computational outages. Motivated by this trade-off, an effective computationally aware scheduling algorithm is developed that balances demands for high throughput and low outage rates.Comment: Conference on Information Sciences and Systems (CISS) 2017, to appea

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Exploiting Capture Effect in Frameless ALOHA for Massive Wireless Random Access

    Full text link
    The analogies between successive interference cancellation (SIC) in slotted ALOHA framework and iterative belief-propagation erasure-decoding, established recently, enabled the application of the erasure-coding theory and tools to design random access schemes. This approach leads to throughput substantially higher than the one offered by the traditional slotted ALOHA. In the simplest setting, SIC progresses when a successful decoding occurs for a single user transmission. In this paper we consider a more general setting of a channel with capture and explore how such physical model affects the design of the coded random access protocol. Specifically, we assess the impact of capture effect in Rayleigh fading scenario on the design of SIC-enabled slotted ALOHA schemes. We provide analytical treatment of frameless ALOHA, which is a special case of SIC-enabled ALOHA scheme. We demonstrate both through analytical and simulation results that the capture effect can be very beneficial in terms of achieved throughput.Comment: Accepted for presentation at IEEE WCNC'14 Track 2 (MAC and Cross-Layer Design
    • …
    corecore