990 research outputs found

    On Representing, Purging, and Utilizing Change Logs in Process Management Systems

    Get PDF
    In recent years adaptive process management technolgy has emerged in order to increase the flexibility of business process implementations and to support process changes at different levels. Usually, respective systems log comprehensive information about changes, which can then be used for different purposes including process traceability, change reuse and process recovery. Therefore the adequate and efficient representation of change logs is a crucial task for adaptive process management systems. In this paper we show which information has to be (minimally) captured in process change logs and how it should be represented in a generic and efficient way. We discuss different design alternatives and show how to deal with noise in process change logs. Finally, we present an elegant and efficient implementation approach, which we applied in the ADEPT2 process management system. Altogether the presented concepts provide an important pillar for adaptive process management technology and emerging fields (e.g., process change mining)

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    Change Mining in Adaptive Process Management Systems

    Get PDF
    The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms

    Identifying and Evaluating Change Patterns and Change Support Features in Process-Aware Information Systems.

    Get PDF
    In order to provide effective support, the introduction of process-aware information systems (PAIS) must not freeze existing business processes. Instead PAIS should allow authorized users to flexibly deviate from the predefined processes if required and to evolve business processes in a controlled manner over time. Many software vendors promise flexible system solutions for realizing such adaptive PAIS, but are often unable to cope with fundamental issues elated to process change (e.g., correctness and robustness). The existence of different process support paradigms and the lack of methods for comparing existing change approaches makes it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster systematic comparison of existing process management technology with respect to change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry

    Refactoring Process Models in Large Process Repositories.

    Get PDF
    With the increasing adoption of process-aware information systems (PAIS), large process model repositories have emerged. Over time respective models have to be re-aligned to the real-world business processes through customization or adaptation. This bears the risk that model redundancies are introduced and complexity is increased. If no continuous investment is made in keeping models simple, changes are becoming increasingly costly and error-prone. Though refactoring techniques are widely used in software engineering to address related problems, this does not yet constitute state-of-the art in business process management. Process designers either have to refactor process models by hand or cannot apply respective techniques at all. This paper proposes a set of behaviour-preserving techniques for refactoring large process repositories. This enables process designers to eectively deal with model complexity by making process models better understandable and easier to maintain

    Keeping the Cost of Process Change Low through Refactoring

    Get PDF
    With the increasing adoption of process-aware information systems (PAIS) large process model repositories have emerged. Over time respective models have to be re-aligned to the real world business processes through customization or adaptation. This bears the risk that model redundancies are introduced and complexity is increased. If no continuous investment is made in keeping models simple, changes are becoming increasingly costly and error-prone. Although refactoring techniques are widely used in software engineering to address related problems, this does not yet constitute state-of-the art in business process management. Consequently, process designers either have to refactor process models by hand or can not apply respective techniques at all. In this paper we propose a set of techniques for refactoring large process repositories, which are behaviour-preserving. The proposed refactorings enable process designers to effectively deal with model complexity by making process models easier to change, less error-prone and better understandable

    Process Change Patterns: Recent Research, Use Cases, Research Directions

    Get PDF
    In previous work, we introduced change patterns to foster a systematic comparison of process-aware information systems with respect to change support. This paper revisits change patterns and shows how our research activities have evolved. Further, it presents characteristic use cases and gives insights into current research directions

    Improving Exception Handling by Discovering Change Dependencies in Adaptive Process Management Systems

    Get PDF
    Process-aware information systems should enable the flexible alignment of business processes to new requirements by supporting deviations from the predefined process model at runtime. To facilitate such dynamic process changes we have adopted techniques from casebased reasoning (CBR). In particular, our existing approach allows to capture the semantics of ad-hoc changes, to support their memorization, and to enable their reuse in upcoming exceptional situations. To further improve change reuse this paper presents an approach for discovering dependencies between ad-hoc modifications from change history. Based on this information better user assistance can be provided when dynamic process changes have to be made

    Change Support in Process-Aware Information Systems - A Pattern-Based Analysis

    Get PDF
    In today's dynamic business world the economic success of an enterprise increasingly depends on its ability to react to changes in its environment in a quick and flexible way. Process-aware information systems (PAIS) offer promising perspectives in this respect and are increasingly employed for operationally supporting business processes. To provide effective business process support, flexible PAIS are needed which do not freeze existing business processes, but allow for loosely specified processes, which can be detailed during run-time. In addition, PAIS should enable authorized users to flexibly deviate from the predefined processes if required (e.g., by allowing them to dynamically add, delete, or move process activities) and to evolve business processes over time. At the same time PAIS must ensure consistency and robustness. The emergence of different process support paradigms and the lack of methods for comparing existing change approaches have made it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster the systematic comparison of existing process management technology with respect to process change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry. The identified change patterns and change support features facilitate the comparison of change support frameworks, and consequently will support PAIS engineers in selecting the right technology for realizing flexible PAIS. In addition, this work can be used as a reference for implementing more flexible PAIS
    corecore