687 research outputs found

    On Relevant Equilibria in Reachability Games

    Full text link
    We study multiplayer reachability games played on a finite directed graph equipped with target sets, one for each player. In those reachability games, it is known that there always exists a Nash equilibrium (NE) and a subgame perfect equilibrium (SPE). But sometimes several equilibria may coexist such that in one equilibrium no player reaches his target set whereas in another one several players reach it. It is thus very natural to identify "relevant" equilibria. In this paper, we consider different notions of relevant equilibria including Pareto optimal equilibria and equilibria with high social welfare. We provide complexity results for various related decision problems

    Pure Nash Equilibria in Concurrent Deterministic Games

    Full text link
    We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player turn-based game which turns Nash equilibria into winning strategies (for some objective that depends on the preference relations of the players in the original game). We use that transformation to design algorithms for computing Nash equilibria in finite games, which in most cases have optimal worst-case complexity, for large classes of preference relations. This includes the purely qualitative framework, where each player has a single omega-regular objective that she wants to satisfy, but also the larger class of semi-quantitative objectives, where each player has several omega-regular objectives equipped with a preorder (for instance, a player may want to satisfy all her objectives, or to maximise the number of objectives that she achieves.)Comment: 72 page

    On (Subgame Perfect) Secure Equilibrium in Quantitative Reachability Games

    Full text link
    We study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In such games, each player aims at reaching his own goal set of states as soon as possible. A previous work on this model showed that Nash equilibria (resp. secure equilibria) are guaranteed to exist in the multiplayer (resp. two-player) case. The existence of secure equilibria in the multiplayer case remained and is still an open problem. In this paper, we focus our study on the concept of subgame perfect equilibrium, a refinement of Nash equilibrium well-suited in the framework of games played on graphs. We also introduce the new concept of subgame perfect secure equilibrium. We prove the existence of subgame perfect equilibria (resp. subgame perfect secure equilibria) in multiplayer (resp. two-player) quantitative reachability games. Moreover, we provide an algorithm deciding the existence of secure equilibria in the multiplayer case.Comment: 32 pages. Full version of the FoSSaCS 2012 proceedings pape

    The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

    Get PDF
    We study multiplayer quantitative reachability games played on a finite directed graph, where the objective of each player is to reach his target set of vertices as quickly as possible. Instead of the well-known notion of Nash equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE), a refinement of NE well-suited in the framework of games played on graphs. It is known that there always exists an SPE in quantitative reachability games and that the constrained existence problem is decidable. We here prove that this problem is PSPACE-complete. To obtain this result, we propose a new algorithm that iteratively builds a set of constraints characterizing the set of SPE outcomes in quantitative reachability games. This set of constraints is obtained by iterating an operator that reinforces the constraints up to obtaining a fixpoint. With this fixpoint, the set of SPE outcomes can be represented by a finite graph of size at most exponential. A careful inspection of the computation allows us to establish PSPACE membership

    Games on graphs with a public signal monitoring

    Full text link
    We study pure Nash equilibria in games on graphs with an imperfect monitoring based on a public signal. In such games, deviations and players responsible for those deviations can be hard to detect and track. We propose a generic epistemic game abstraction, which conveniently allows to represent the knowledge of the players about these deviations, and give a characterization of Nash equilibria in terms of winning strategies in the abstraction. We then use the abstraction to develop algorithms for some payoff functions.Comment: 28 page
    corecore