652 research outputs found

    Ramsey Goodness and Beyond

    Full text link
    In a seminal paper from 1983, Burr and Erdos started the systematic study of Ramsey numbers of cliques vs. large sparse graphs, raising a number of problems. In this paper we develop a new approach to such Ramsey problems using a mix of the Szemeredi regularity lemma, embedding of sparse graphs, Turan type stability, and other structural results. We give exact Ramsey numbers for various classes of graphs, solving all but one of the Burr-Erdos problems.Comment: A new reference is adde

    The Ramsey number of dense graphs

    Get PDF
    The Ramsey number r(H) of a graph H is the smallest number n such that, in any two-colouring of the edges of K_n, there is a monochromatic copy of H. We study the Ramsey number of graphs H with t vertices and density \r, proving that r(H) \leq 2^{c \sqrt{\r} \log (2/\r) t}. We also investigate some related problems, such as the Ramsey number of graphs with t vertices and maximum degree \r t and the Ramsey number of random graphs in \mathcal{G}(t, \r), that is, graphs on t vertices where each edge has been chosen independently with probability \r.Comment: 15 page

    Induced Ramsey-type theorems

    Full text link
    We present a unified approach to proving Ramsey-type theorems for graphs with a forbidden induced subgraph which can be used to extend and improve the earlier results of Rodl, Erdos-Hajnal, Promel-Rodl, Nikiforov, Chung-Graham, and Luczak-Rodl. The proofs are based on a simple lemma (generalizing one by Graham, Rodl, and Rucinski) that can be used as a replacement for Szemeredi's regularity lemma, thereby giving much better bounds. The same approach can be also used to show that pseudo-random graphs have strong induced Ramsey properties. This leads to explicit constructions for upper bounds on various induced Ramsey numbers.Comment: 30 page
    • …
    corecore