511 research outputs found

    Adaptive Non-myopic Quantizer Design for Target Tracking in Wireless Sensor Networks

    Full text link
    In this paper, we investigate the problem of nonmyopic (multi-step ahead) quantizer design for target tracking using a wireless sensor network. Adopting the alternative conditional posterior Cramer-Rao lower bound (A-CPCRLB) as the optimization metric, we theoretically show that this problem can be temporally decomposed over a certain time window. Based on sequential Monte-Carlo methods for tracking, i.e., particle filters, we design the local quantizer adaptively by solving a particlebased non-linear optimization problem which is well suited for the use of interior-point algorithm and easily embedded in the filtering process. Simulation results are provided to illustrate the effectiveness of our proposed approach.Comment: Submitted to 2013 Asilomar Conference on Signals, Systems, and Computer

    On Distributed Linear Estimation With Observation Model Uncertainties

    Full text link
    We consider distributed estimation of a Gaussian source in a heterogenous bandwidth constrained sensor network, where the source is corrupted by independent multiplicative and additive observation noises, with incomplete statistical knowledge of the multiplicative noise. For multi-bit quantizers, we derive the closed-form mean-square-error (MSE) expression for the linear minimum MSE (LMMSE) estimator at the FC. For both error-free and erroneous communication channels, we propose several rate allocation methods named as longest root to leaf path, greedy and integer relaxation to (i) minimize the MSE given a network bandwidth constraint, and (ii) minimize the required network bandwidth given a target MSE. We also derive the Bayesian Cramer-Rao lower bound (CRLB) and compare the MSE performance of our proposed methods against the CRLB. Our results corroborate that, for low power multiplicative observation noises and adequate network bandwidth, the gaps between the MSE of our proposed methods and the CRLB are negligible, while the performance of other methods like individual rate allocation and uniform is not satisfactory

    Adaptive Quantizers for Estimation

    Full text link
    In this paper, adaptive estimation based on noisy quantized observations is studied. A low complexity adaptive algorithm using a quantizer with adjustable input gain and offset is presented. Three possible scalar models for the parameter to be estimated are considered: constant, Wiener process and Wiener process with deterministic drift. After showing that the algorithm is asymptotically unbiased for estimating a constant, it is shown, in the three cases, that the asymptotic mean squared error depends on the Fisher information for the quantized measurements. It is also shown that the loss of performance due to quantization depends approximately on the ratio of the Fisher information for quantized and continuous measurements. At the end of the paper the theoretical results are validated through simulation under two different classes of noise, generalized Gaussian noise and Student's-t noise
    • …
    corecore