953 research outputs found

    On Quadratic Inverses for Quadratic Permutation Polynomials over Integer Rings

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Sun and Takeshita have recently shown that the class of quadratic permutation polynomials over integer rings provides excellent performance for turbo codes. In this correspondence, a necessary and sufficient condition is proven for the existence of a quadratic inverse polynomial for a quadratic permutation polynomial over an integer ring. Further, a simple construction is given for the quadratic inverse. All but one of the quadratic interleavers proposed earlier by Sun and Takeshita are found to admit a quadratic inverse, although none were explicitly designed to do so. An explanation is argued for the observation that restriction to a quadratic inverse polynomial does not narrow the pool of good quadratic interleavers for turbo codes.Comment: Submitted as a Correspondence to the IEEE Transactions on Information Theory Submitted : April 1, 2005 Revised : Nov. 15, 200

    On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Contention-free interleavers have been recently shown to be suitable for parallel decoding of turbo codes. In this correspondence, it is shown that permutation polynomials generate maximum contention-free interleavers, i.e., every factor of the interleaver length becomes a possible degree of parallel processing of the decoder. Further, it is shown by computer simulations that turbo codes using these interleavers perform very well for the 3rd Generation Partnership Project (3GPP) standard.Comment: 13 pages, 2 figures, submitted as a correspondence to the IEEE Transactions on Information Theory, revised versio

    Further Results on Quadratic Permutation Polynomial-Based Interleavers for Turbo Codes

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Also, the recently proposed quadratic permutation polynomial (QPP) based interleavers by Sun and Takeshita (IEEE Trans. Inf. Theory, Jan. 2005) provide excellent performance for short-to-medium block lengths, and have been selected for the 3GPP LTE standard. In this work, we derive some upper bounds on the best achievable minimum distance dmin of QPP-based conventional binary turbo codes (with tailbiting termination, or dual termination when the interleaver length N is sufficiently large) that are tight for larger block sizes. In particular, we show that the minimum distance is at most 2(2^{\nu +1}+9), independent of the interleaver length, when the QPP has a QPP inverse, where {\nu} is the degree of the primitive feedback and monic feedforward polynomials. However, allowing the QPP to have a larger degree inverse may give strictly larger minimum distances (and lower multiplicities). In particular, we provide several QPPs with an inverse degree of at least three for some of the 3GPP LTE interleaver lengths giving a dmin with the 3GPP LTE constituent encoders which is strictly larger than 50. For instance, we have found a QPP for N=6016 which gives an estimated dmin of 57. Furthermore, we provide the exact minimum distance and the corresponding multiplicity for all 3GPP LTE turbo codes (with dual termination) which shows that the best minimum distance is 51. Finally, we compute the best achievable minimum distance with QPP interleavers for all 3GPP LTE interleaver lengths N <= 4096, and compare the minimum distance with the one we get when using the 3GPP LTE polynomials.Comment: Submitted to IEEE Trans. Inf. Theor

    Analysis of cubic permutation polynomials for turbo codes

    Full text link
    Quadratic permutation polynomials (QPPs) have been widely studied and used as interleavers in turbo codes. However, less attention has been given to cubic permutation polynomials (CPPs). This paper proves a theorem which states sufficient and necessary conditions for a cubic permutation polynomial to be a null permutation polynomial. The result is used to reduce the search complexity of CPP interleavers for short lengths (multiples of 8, between 40 and 352), by improving the distance spectrum over the set of polynomials with the largest spreading factor. The comparison with QPP interleavers is made in terms of search complexity and upper bounds of the bit error rate (BER) and frame error rate (FER) for AWGN and for independent fading Rayleigh channels. Cubic permutation polynomials leading to better performance than quadratic permutation polynomials are found for some lengths.Comment: accepted for publication to Wireless Personal Communications (19 pages, 4 figures, 5 tables). The final publication is available at springerlink.co

    Permutation Polynomial Interleaved Zadoff-Chu Sequences

    Full text link
    Constant amplitude zero autocorrelation (CAZAC) sequences have modulus one and ideal periodic autocorrelation function. Such sequences have been used in communications systems, e.g., for reference signals, synchronization signals and random access preambles. We propose a new family CAZAC sequences, which is constructed by interleaving a Zadoff-Chu sequence by a quadratic permutation polynomial (QPP), or by a permutation polynomial whose inverse is a QPP. It is demonstrated that a set of orthogonal interleaved Zadoff-Chu sequences can be constructed by proper choice of QPPs.Comment: Submitted to IEEE Transactions on Information Theor
    corecore