2 research outputs found

    Influence Spread in Two-Layer Interdependent Networks: Designed Single-Layer or Random Two-Layer Initial Spreaders?

    Get PDF
    Influence spread in multi-layer interdependent networks (M-IDN) has been studied in the last few years; however, prior works mostly focused on the spread that is initiated in a single layer of an M-IDN. In real world scenarios, influence spread can happen concurrently among many or all components making up the topology of an M-IDN. This paper investigates the effectiveness of different influence spread strategies in M-IDNs by providing a comprehensive analysis of the time evolution of influence propagation given different initial spreader strategies. For this study we consider a two-layer interdependent network and a general probabilistic threshold influence spread model to evaluate the evolution of influence spread over time. For a given coupling scenario, we tested multiple interdependent topologies, composed of layers A and B, against four cases of initial spreader selection: (1) random initial spreaders in A, (2) random initial spreaders in both A and B, (3) targeted initial spreaders using degree centrality in A, and (4) targeted initial spreaders using degree centrality in both A and B. Our results indicate that the effectiveness of influence spread highly depends on network topologies, the way they are coupled, and our knowledge of the network structure — thus an initial spread starting in only A can be as effective as initial spread starting in both A and B concurrently. Similarly, random initial spread in multiple layers of an interdependent system can be more severe than a comparable initial spread in a single layer. Our results can be easily extended to different types of event propagation in multi-layer interdependent networks such as information/misinformation propagation in online social networks, disease propagation in offline social networks, and failure/attack propagation in cyber-physical systems

    On Propagation of phenomena in interdependent networks

    No full text
    When multiple networks are interconnected because of mutual service interdependence, propagation of phenomena across the networks is likely to occur. Depending on the type of networks and phenomenon, the propagation may be a desired effect, such as the spread of information or consensus in a social network, or an unwanted one, such as the propagation of a virus or a cascade of failures in a communication or service network. In this paper, we propose a general analytic model that captures multiple types of dependency and of interaction among nodes of interdependent networks, that may cause the propagation of phenomena. The above model is used to evaluate the effects of different diffusion models in a wide range of network topologies, including different models of random graphs and real networks. We propose a new centrality metric and compare it to more traditional approaches to assess the impact of individual network nodes in the propagation. We propose guidelines to design networks in which the diffusion is either a desired phenomenon or an unwanted one, and consequently must be fostered or prevented, respectively. We performed extensive simulations to extend our study to large networks and to show the benefits of the proposed design solution
    corecore