366 research outputs found

    The parameterised complexity of counting connected subgraphs and graph motifs

    Get PDF
    We introduce a family of parameterised counting problems on graphs, p-#Induced Subgraph With Property(Φ), which generalises a number of problems which have previously been studied. This paper focuses on the case in which Φ defines a family of graphs whose edge-minimal elements all have bounded treewidth; this includes the special case in which Φ describes the property of being connected. We show that exactly counting the number of connected induced k-vertex subgraphs in an n-vertex graph is #W[1]-hard, but on the other hand there exists an FPTRAS for the problem; more generally, we show that there exists an FPTRAS for p-#Induced Subgraph With Property(Φ) whenever Φ is monotone and all the minimal graphs satisfying Φ have bounded treewidth. We then apply these results to a counting version of the Graph Motif problem

    Exponential Time Complexity of the Permanent and the Tutte Polynomial

    Get PDF
    We show conditional lower bounds for well-studied #P-hard problems: (a) The number of satisfying assignments of a 2-CNF formula with n variables cannot be counted in time exp(o(n)), and the same is true for computing the number of all independent sets in an n-vertex graph. (b) The permanent of an n x n matrix with entries 0 and 1 cannot be computed in time exp(o(n)). (c) The Tutte polynomial of an n-vertex multigraph cannot be computed in time exp(o(n)) at most evaluation points (x,y) in the case of multigraphs, and it cannot be computed in time exp(o(n/polylog n)) in the case of simple graphs. Our lower bounds are relative to (variants of) the Exponential Time Hypothesis (ETH), which says that the satisfiability of n-variable 3-CNF formulas cannot be decided in time exp(o(n)). We relax this hypothesis by introducing its counting version #ETH, namely that the satisfying assignments cannot be counted in time exp(o(n)). In order to use #ETH for our lower bounds, we transfer the sparsification lemma for d-CNF formulas to the counting setting

    Lattices of Graphical Gaussian Models with Symmetries

    Full text link
    In order to make graphical Gaussian models a viable modelling tool when the number of variables outgrows the number of observations, model classes which place equality restrictions on concentrations or partial correlations have previously been introduced in the literature. The models can be represented by vertex and edge coloured graphs. The need for model selection methods makes it imperative to understand the structure of model classes. We identify four model classes that form complete lattices of models with respect to model inclusion, which qualifies them for an Edwards-Havr\'anek model selection procedure. Two classes turn out most suitable for a corresponding model search. We obtain an explicit search algorithm for one of them and provide a model search example for the other.Comment: 29 pages, 18 figures. Restructured Section 5, results unchanged; added references in Section 6; amended example in Section 6.

    Coloring Graphs having Few Colorings over Path Decompositions

    Full text link
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (kϵ)pw(G)poly(n)(k-\epsilon)^{\operatorname{pw}(G)}\operatorname{poly}(n) time algorithm for deciding if an nn-vertex graph GG with pathwidth pw(G)\operatorname{pw}(G) admits a proper vertex coloring with kk colors unless the Strong Exponential Time Hypothesis (SETH) is false. We show here that nevertheless, when k>Δ/2+1k>\lfloor \Delta/2 \rfloor + 1, where Δ\Delta is the maximum degree in the graph GG, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph GG along with a path decomposition of GG with pathwidth pw(G)\operatorname{pw}(G) runs in (Δ/2+1)pw(G)poly(n)s(\lfloor \Delta/2 \rfloor + 1)^{\operatorname{pw}(G)}\operatorname{poly}(n)s time, that distinguishes between kk-colorable graphs having at most ss proper kk-colorings and non-kk-colorable graphs. We also show how to obtain a kk-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than kk at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is kk-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few kk-colorings. Yet every non-kk-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases.Comment: Strengthened result from uniquely kk-colorable graphs to graphs with few kk-colorings. Also improved running tim
    corecore