1,134 research outputs found

    On some special classes of contact B0B_0-VPG graphs

    Full text link
    A graph GG is a B0B_0-VPG graph if one can associate a path on a rectangular grid with each vertex such that two vertices are adjacent if and only if the corresponding paths intersect at at least one grid-point. A graph GG is a contact B0B_0-VPG graph if it is a B0B_0-VPG graph admitting a representation with no two paths crossing and no two paths sharing an edge of the grid. In this paper, we present a minimal forbidden induced subgraph characterisation of contact B0B_0-VPG graphs within four special graph classes: chordal graphs, tree-cographs, P4P_4-tidy graphs and P5P_5-free graphs. Moreover, we present a polynomial-time algorithm for recognising chordal contact B0B_0-VPG graphs.Comment: 34 pages, 15 figure

    FPT algorithms to recognize well covered graphs

    Full text link
    Given a graph GG, let vc(G)vc(G) and vc+(G)vc^+(G) be the sizes of a minimum and a maximum minimal vertex covers of GG, respectively. We say that GG is well covered if vc(G)=vc+(G)vc(G)=vc^+(G) (that is, all minimal vertex covers have the same size). Determining if a graph is well covered is a coNP-complete problem. In this paper, we obtain O∗(2vc)O^*(2^{vc})-time and O∗(1.4656vc+)O^*(1.4656^{vc^+})-time algorithms to decide well coveredness, improving results of Boria et. al. (2015). Moreover, using crown decomposition, we show that such problems admit kernels having linear number of vertices. In 2018, Alves et. al. (2018) proved that recognizing well covered graphs is coW[2]-hard when the independence number α(G)=n−vc(G)\alpha(G)=n-vc(G) is the parameter. Contrasting with such coW[2]-hardness, we present an FPT algorithm to decide well coveredness when α(G)\alpha(G) and the degeneracy of the input graph GG are aggregate parameters. Finally, we use the primeval decomposition technique to obtain a linear time algorithm for extended P4P_4-laden graphs and (q,q−4)(q,q-4)-graphs, which is FPT parameterized by qq, improving results of Klein et al (2013).Comment: 15 pages, 2 figure

    Characterizing 2-crossing-critical graphs

    Full text link
    It is very well-known that there are precisely two minimal non-planar graphs: K5K_5 and K3,3K_{3,3} (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: they each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the M\"obius Ladder V10V_{10}; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10V_{10}; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8V_{8}.Comment: 176 pages, 28 figure
    • …
    corecore