8 research outputs found

    Bounds and Constructions of Singleton-Optimal Locally Repairable Codes with Small Localities

    Full text link
    Constructions of optimal locally repairable codes (LRCs) achieving Singleton-type bound have been exhaustively investigated in recent years. In this paper, we consider new bounds and constructions of Singleton-optimal LRCs with minmum distance d=6d=6, locality r=3r=3 and minimum distance d=7d=7 and locality r=2r=2, respectively. Firstly, we establish equivalent connections between the existence of these two families of LRCs and the existence of some subsets of lines in the projective space with certain properties. Then, we employ the line-point incidence matrix and Johnson bounds for constant weight codes to derive new improved bounds on the code length, which are tighter than known results. Finally, by using some techniques of finite field and finite geometry, we give some new constructions of Singleton-optimal LRCs, which have larger length than previous ones

    Singleton-Optimal LRCs and Perfect LRCs via Cyclic and Constacyclic Codes

    Full text link
    Locally repairable codes (LRCs) have emerged as an important coding scheme in distributed storage systems (DSSs) with relatively low repair cost by accessing fewer non-failure nodes. Theoretical bounds and optimal constructions of LRCs have been widely investigated. Optimal LRCs via cyclic and constacyclic codes provide significant benefit of elegant algebraic structure and efficient encoding procedure. In this paper, we continue to consider the constructions of optimal LRCs via cyclic and constacyclic codes with long code length. Specifically, we first obtain two classes of qq-ary cyclic Singleton-optimal (n,k,d=6;r=2)(n, k, d=6;r=2)-LRCs with length n=3(q+1)n=3(q+1) when 3โˆฃ(qโˆ’1)3 \mid (q-1) and qq is even, and length n=32(q+1)n=\frac{3}{2}(q+1) when 3โˆฃ(qโˆ’1)3 \mid (q-1) and qโ‰ก1(โ€Šmodโ€Šย 4)q \equiv 1(\bmod~4), respectively. To the best of our knowledge, this is the first construction of qq-ary cyclic Singleton-optimal LRCs with length n>q+1n>q+1 and minimum distance dโ‰ฅ5d \geq 5. On the other hand, an LRC acheiving the Hamming-type bound is called a perfect LRC. By using cyclic and constacyclic codes, we construct two new families of qq-ary perfect LRCs with length n=qmโˆ’1qโˆ’1n=\frac{q^m-1}{q-1}, minimum distance d=5d=5 and locality r=2r=2

    Constructions of Binary Optimal Locally Repairable Codes via Intersection Subspaces

    Full text link
    Locally repairable codes (LRCs), which can recover any symbol of a codeword by reading only a small number of other symbols, have been widely used in real-world distributed storage systems, such as Microsoft Azure Storage and Ceph Storage Cluster. Since binary linear LRCs can significantly reduce coding and decoding complexity, constructions of binary LRCs are of particular interest. The aim of this paper is to construct dimensional optimal binary locally repairable codes with disjoint local repair groups. We introduce how to connect intersection subspaces with binary locally repairable codes and construct dimensional optimal binary linear LRCs with locality 2b2^b (bโ‰ฅ3b\geq 3) and minimum distance dโ‰ฅ6d\geq 6 by employing intersection subspaces deduced from the direct sum. This method will sufficiently increase the number of possible repair groups of dimensional optimal LRCs, and thus efficiently expanding the range of the construction parameters while keeping the largest code rates compared with all known binary linear LRCs with minimum distance dโ‰ฅ6d\geq 6 and locality 2b2^b (bโ‰ฅ3b\geq 3).Comment: Accepted for publication in the SCIENCE CHINA Information Science

    Bounds on the minimum distance of locally recoverable codes

    Full text link
    We consider locally recoverable codes (LRCs) and aim to determine the smallest possible length n=nq(k,d,r)n=n_q(k,d,r) of a linear [n,k,d]q[n,k,d]_q-code with locality rr. For kโ‰ค7k\le 7 we exactly determine all values of n2(k,d,2)n_2(k,d,2) and for kโ‰ค6k\le 6 we exactly determine all values of n2(k,d,1)n_2(k,d,1). For the ternary field we also state a few numerical results. As a general result we prove that nq(k,d,r)n_q(k,d,r) equals the Griesmer bound if the minimum Hamming distance dd is sufficiently large and all other parameters are fixed.Comment: 23 pages, 3 table

    Bounds on the minimum distance of locally recoverable codes

    Get PDF

    ์ƒˆ๋กœ์šด ์†Œ์‹ค ์ฑ„๋„์„ ์œ„ํ•œ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ ๋ฐ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ๋ฐ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ LDPC ๋ถ€ํ˜ธ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๋…ธ์ข…์„ .In this dissertation, three main contributions are given asi) new two-stage automorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes and existing LRCs, and iii) new constructions of high-rate generalized root protograph (GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered. First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure channel. Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes in the erasure channel was introduced, which has good erasure decoding performance with low decoding complexity. In this research, I propose new TS-AGDs for cyclic codes in the erasure channel by modifying the parity check matrix and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect decoding in the erasure channel, that is, the same decoding performance as the maximum likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check matrix and the submatrix inversion are also proposed and analyzed. Second, I propose new constructions of binary and ternary LRCs using cyclic codes and existing two LRCs for distributed storage system. For a primitive work, new constructions of binary and ternary LRCs using cyclic codes and their concatenation are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and 6 are optimal in terms of the upper bounds. In addition, the similar method of the binary case is applied to construct the ternary LRCs with good parameters. Also, new constructions of binary LRCs with large Hamming distance and disjoint repair groups are proposed. The proposed binary linear LRCs constructed by using existing binary LRCs are optimal or near-optimal in terms of the bound with disjoint repair group. Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic block interference and anti-jamming PR LDPC codes for follower jamming. The proposed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric channel with block interference and Nakagami-mm block fading. In these channel environments, GRP LDPC codes have good performance approaching to the theoretical limit in the channel with one block interference, where their performance is shown by the channel threshold or the channel outage probability. In the proposed design, I find base matrices using the protograph extrinsic information transfer (PEXIT) algorithm. Also, the proposed new constructions of anti-jamming partially regular LDPC codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS). For a channel environment, I suppose follower jamming with random dwell time and Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) modulation. For a coding perspective, an anti-jamming LDPC codes against follower jamming are introduced. In order to optimize the jamming environment, the partially regular structure and corresponding density evolution schemes are used. A series of simulations show that the proposed codes outperforms the 802.16e standard in the presence of follower noise jamming.์ด ๋…ผ๋ฌธ์—์„œ๋Š”, i) ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ , ii) ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ(LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•, ๋ฐ iii) ๋ธ”๋ก ๊ฐ„์„ญ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ๊ณ ๋ถ€ํšจ์œจ์˜ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„(generalized root protograph, GRP) LDPC ๋ถ€ํ˜ธ ๋ฐ ์ถ”์  ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ํ•ญ์žฌ๋ฐ ๋ถ€๋ถ„ ๊ท ์ผ (anti-jamming paritally regular, AJ-PR) LDPC ๋ถ€ํ˜ธ๊ฐ€ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ ํ˜น์€ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๋“ฑ์˜ ์‘์šฉ์œผ๋กœ ์ธํ•ด ์†Œ์‹ค ์ฑ„๋„์—์„œ์˜ ์˜ค๋ฅ˜ ์ •์ • ๋ถ€ํ˜ธ ๊ธฐ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๋ณตํ˜ธ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋†’์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๊ธด ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์‹ค์šฉ์ ์ด์ง€ ๋ชปํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‚ฎ์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋Š” ์ˆœํ™˜ ๋ถ€ํ˜ธ์—์„œ ์ด๋‹จ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒจ๋ฆฌํ‹ฐ ๊ฒ€์‚ฌ ํ–‰๋ ฌ์„ ๋ณ€ํ˜•ํ•˜๊ณ , ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ณตํ˜ธ๊ธฐ๋Š” perfect ๋ถ€ํ˜ธ, BCH ๋ถ€ํ˜ธ ๋ฐ ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ ๋ถ„๋ฆฌ (maximum distance separable, MDS) ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด์„œ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ˆ˜์น˜ ๋ถ„์„์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ๋ณตํ˜ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ณด๋‹ค ๋‚ฎ์€ ๋ณต์žก๋„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ช‡๋ช‡์˜ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ตœ๋Œ€ ์šฐ๋„ (maximal likelihood, ML)๊ณผ ๊ฐ™์€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์ž„์„ ๋ณด์ธ๋‹ค. MDS ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ, ํ™•์žฅ๋œ ํŒจ๋ฆฌํ‹ฐ๊ฒ€์‚ฌ ํ–‰๋ ฌ ๋ฐ ์ž‘์€ ํฌ๊ธฐ์˜ ํ–‰๋ ฌ์˜ ์—ญ์—ฐ์‚ฐ์„ ํ™œ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ (LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋กœ์„œ, ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์—ฐ์ ‘์„ ํ™œ์šฉํ•œ ์ด์ง„ ๋ฐ ์‚ผ์ง„ LRC ์„ค๊ณ„ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ตœ์†Œ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ๊ฐ€ 4,5, ํ˜น์€ 6์ธ ์ œ์•ˆ๋œ ์ด์ง„ LRC ์ค‘ ์ผ๋ถ€๋Š” ์ƒํ•œ๊ณผ ๋น„๊ตํ•ด ๋ณด์•˜์„ ๋•Œ ์ตœ์  ์„ค๊ณ„์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋น„์Šทํ•œ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ข‹์€ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์‚ผ์ง„ LRC๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ์™ธ์— ๊ธฐ์กด์˜ LRC๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํฐ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด LRC๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ LRC๋Š” ๋ถ„๋ฆฌ๋œ ๋ณต๊ตฌ ๊ตฐ ์กฐ๊ฑด์—์„œ ์ตœ์ ์ด๊ฑฐ๋‚˜ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, GRP LDPC ๋ถ€ํ˜ธ๋Š” Nakagami-mm ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ธ”๋ก ๊ฐ„์„ญ์ด ์žˆ๋Š” ๋‘ ์ƒํƒœ์˜ ์ด์ง„ ๋Œ€์นญ ์ฑ„๋„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œ GRP LDPC ๋ถ€ํ˜ธ๋Š” ํ•˜๋‚˜์˜ ๋ธ”๋ก ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ, ์ด๋ก ์  ์„ฑ๋Šฅ์— ๊ฐ€๊นŒ์šด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก  ๊ฐ’์€ ์ฑ„๋„ ๋ฌธํ„ฑ๊ฐ’์ด๋‚˜ ์ฑ„๋„ outage ํ™•๋ฅ ์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„์—์„œ๋Š”, ๋ณ€ํ˜•๋œ PEXIT ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์ดˆ ํ–‰๋ ฌ์„ ์„ค๊ณ„ํ•œ๋‹ค. ๋˜ํ•œ AJ-PR LDPC ๋ถ€ํ˜ธ๋Š” ์ฃผํŒŒ์ˆ˜ ๋„์•ฝ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ฑ„๋„ ํ™˜๊ฒฝ์œผ๋กœ MFSK ๋ณ€๋ณต์กฐ ๋ฐฉ์‹์˜ ๋ ˆ์ผ๋ฆฌ ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ฌด์ž‘์œ„ํ•œ ์ง€์† ์‹œ๊ฐ„์ด ์žˆ๋Š” ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์žฌ๋ฐ ํ™˜๊ฒฝ์œผ๋กœ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ๋ถ€๋ถ„ ๊ท ์ผ ๊ตฌ์กฐ ๋ฐ ํ•ด๋‹น๋˜๋Š” ๋ฐ€๋„ ์ง„ํ™” (density evolution, DE) ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋œ๋‹ค. ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ ๋ถ€ํ˜ธ๊ฐ€ 802.16e์— ์‚ฌ์šฉ๋˜์—ˆ๋˜ LDPC ๋ถ€ํ˜ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 1.1 Background 1.2 Overview of Dissertation 1.3 Notations 2 Preliminaries 2.1 IED and AGD for Erasure Channel 2.1.1 Iterative Erasure Decoder 2.1.1 Automorphism Group Decoder 2.2. Binary Locally Repairable Codes for Distributed Storage System 2.2.1 Bounds and Optimalities of Binary LRCs 2.2.2 Existing Optimal Constructions of Binary LRCs 2.3 Channels with Block Interference and Jamming 2.3.1 Channels with Block Interference 2.3.2 Channels with Jamming with MFSK and FHSS Environment. 3 New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel 3.1 Some Definitions 3.2 Modification of Parity Check Matrix and Two-Stage AGD 3.2.1 Modification of the Parity Check Matrix 3.2.2 A New Two-Stage AGD 3.2.3 Analysis of Modification Criteria for the Parity Check Matrix 3.2.4 Analysis of Decoding Complexity of TS-AGD 3.2.5 Numerical Analysis for Some Cyclic Codes 3.3 Construction of Parity Check Matrix and TS-AGD for Cyclic MDS Codes 3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes . 3.3.2 Proposed TS-AGD for Cyclic MDS Codes 3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix for Cyclic MDS Codes 3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes . . 4 New Constructions of Binary and Ternary LRCs Using Cyclic Codes and Existing LRCs 4.1 Constructions of Binary LRCs Using Cyclic Codes 4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes 4.3 Constructions of Binary LRCs with Disjoint Repair Groups Using Existing LRCs 4.4 New Constructions of Binary Linear LRCs with d โ‰ฅ 8 Using Existing LRCs 5 New Constructions of Generalized RP LDPC Codes for Block Interference and Partially Regular LDPC Codes for Follower Jamming 5.1 Generalized RP LDPC Codes for a Nonergodic BI 5.1.1 Minimum Blockwise Hamming Weight 5.1.2 Construction of GRP LDPC Codes 5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes 5.2.1 Asymptotic Analysis of LDPC Codes 5.2.2 Numerical Analysis of Finite-Length LDPC Codes 5.3 Follower Noise Jamming with Fixed Scan Speed 5.4 Anti-Jamming Partially Regular LDPC Codes for Follower Noise Jamming 5.4.1 Simplified Channel Model and Corresponding Density Evolution 5.4.2 Construction of AJ-PR-LDPC Codes Based on DE 5.5 Numerical Analysis of AJ-PR LDPC Codes 6 Conclusion Abstract (In Korean)Docto
    corecore