5 research outputs found

    On Optimal TCM Encoders

    Get PDF
    An asymptotically optimal trellis-coded modulation (TCM) encoder requires the joint design of the encoder and the binary labeling of the constellation. Since analytical approaches are unknown, the only available solution is to perform an exhaustive search over the encoder and the labeling. For large constellation sizes and/or many encoder states, however, an exhaustive search is unfeasible. Traditional TCM designs overcome this problem by using a labeling that follows the set-partitioning principle and by performing an exhaustive search over the encoders. In this paper we study binary labelings for TCM and show how they can be grouped into classes, which considerably reduces the search space in a joint design. For 8-ary constellations, the number of different binary labelings that must be tested is reduced from 8!=40320 to 240. For the particular case of an 8-ary pulse amplitude modulation constellation, this number is further reduced to 120 and for 8-ary phase shift keying to only 30. An algorithm to generate one labeling in each class is also introduced. Asymptotically optimal TCM encoders are tabulated which are up to 0.3 dB better than the previously best known encoders

    On the Asymptotic Performance of Bit-Wise Decoders for Coded Modulation

    Get PDF
    Two decoder structures for coded modulation over the Gaussian and flat fading channels are studied: the maximum likelihood symbol-wise decoder, and the (suboptimal) bit-wise decoder based on the bit-interleaved coded modulation paradigm. We consider a 16-ary quadrature amplitude constellation labeled by a Gray labeling. It is shown that the asymptotic loss in terms of pairwise error probability, for any two codewords caused by the bit-wise decoder, is bounded by 1.25 dB. The analysis also shows that for the Gaussian channel the asymptotic loss is zero for a wide range of linear codes, including all rate-1/2 convolutional codes

    Bit-Wise Decoders for Coded Modulation and Broadcast Coded Slotted ALOHA

    Get PDF
    This thesis deals with two aspects of wireless communications. The first aspect is about efficient point-to-point data transmission. To achieve high spectral efficiency, coded modulation, which is a concatenation of higher order modulation with error correction coding, is used. Bit-interleaved coded modulation (BICM) is a pragmatic approach to coded modulation, where soft information on encoded bits is calculated at the receiver and passed to a bit-wise decoder. Soft information is usually obtained in the form of log-likelihood ratios (also known as L-values), calculated using the max-log approximation. In this thesis, we analyze bit-wise decoders for pulse-amplitude modulation (PAM) constellations over the additive white Gaussian noise (AWGN) channel when the max-log approximation is used for calculating L-values. First, we analyze BICM systems from an information theoretic perspective. We prove that the max-log approximation causes information loss for all PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We then analyze how the max-log approximation affects the generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder. Second, we compare the performance of the standard BICM decoder with that of the ML decoder. We show that, when the signal-to-noise ratio (SNR) goes to infinity, the loss in terms of pairwise error probability is bounded by 1.25 dB for any two codewords. The analysis further shows that the loss is zero for a wide range of linear codes. The second aspect of wireless communications treated in this thesis is multiple channel access. Our main objective here is to provide reliable message exchange between nodes in a wireless ad hoc network with stringent delay constraints. To that end, we propose an uncoordinated medium access control protocol, termed all-to-all broadcast coded slotted ALOHA (B-CSA), that exploits coding over packets at the transmitter side and successive interference cancellation at the receiver side. The protocol resembles low-density parity-check codes and can be analyzed using the theory of codes on graphs. The packet loss rate performance of the protocol exhibits a threshold behavior with distinct error floor and waterfall regions. We derive a tight error floor approximation that is used for the optimization of the protocol. We also show how the error floor approximation can be used to design protocols for networks, where users have different reliability requirements. We use B-CSA in vehicular networks and show that it outperforms carrier sense multiple access currently adopted as the MAC protocol for vehicular communications. Finally, we investigate the possibility of establishing a handshake in vehicular networks by means of B-CSA

    On optimal TCM encoders

    No full text
    An asymptotically optimal trellis-coded modulation (TCM) encoder requires the joint design of the encoder and the binary labeling of the constellation. Since analytical approaches are unknown, the only available solution is to perform an exhaustive search over the encoder and the labeling. For large constellation sizes and/or many encoder states, however, an exhaustive search is unfeasible. Traditional TCM designs overcome this problem by using a labeling that follows the set-partitioning principle and by performing an exhaustive search over the encoders. In this paper we study binary labelings for TCM and show how they can be grouped into classes, which considerably reduces the search space in a joint design. For 8-ary constellations, the number of different binary labelings that must be tested is reduced from 8!=40320 to 240. For the particular case of an 8-ary pulse amplitude modulation constellation, this number is further reduced to 120 and for 8-ary phase shift keying to only 30. An algorithm to generate one labeling in each class is also introduced. Asymptotically optimal TCM encoders are tabulated which are up to 0.3 dB better than the previously best known encoders

    On Optimal TCM Encoders

    No full text
    corecore