4,680 research outputs found

    Jump-Diffusion Risk-Sensitive Asset Management I: Diffusion Factor Model

    Full text link
    This paper considers a portfolio optimization problem in which asset prices are represented by SDEs driven by Brownian motion and a Poisson random measure, with drifts that are functions of an auxiliary diffusion factor process. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) By using a change of measure technique introduced by Kuroda and Nagai we show that the problem reduces to solving a certain stochastic control problem in the factor process, which has no jumps. The main result of the paper is to show that the risk-sensitive jump diffusion problem can be fully characterized in terms of a parabolic Hamilton-Jacobi-Bellman PDE rather than a PIDE, and that this PDE admits a classical C^{1,2} solution.Comment: 33 page

    Multiple Disorder Problems for Wiener and Compound Poisson Processes With Exponential Jumps

    Get PDF
    The multiple disorder problem consists of finding a sequence of stopping times which are as close as possible to the (unknown) times of "disorder" when the distribution of an observed process changes its probability characteristics. We present a formulation and solution of the multiple disorder problem for a Wiener and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial optimal switching problems to the corresponding coupled optimal stopping problems and solving the equivalent coupled free-boundary problems by means of the smooth- and continuous-fit conditions.Multiple disorder problem, Wiener process, compound Poisson process, optimal switching, coupled optimal stopping problem, (integro-differential) coupled free-boundary problem, smooth and continuous fit, Ito-Tanaka-Meyer formula.

    Different Approaches on Stochastic Reachability as an Optimal Stopping Problem

    Get PDF
    Reachability analysis is the core of model checking of time systems. For stochastic hybrid systems, this safety verification method is very little supported mainly because of complexity and difficulty of the associated mathematical problems. In this paper, we develop two main directions of studying stochastic reachability as an optimal stopping problem. The first approach studies the hypotheses for the dynamic programming corresponding with the optimal stopping problem for stochastic hybrid systems. In the second approach, we investigate the reachability problem considering approximations of stochastic hybrid systems. The main difficulty arises when we have to prove the convergence of the value functions of the approximating processes to the value function of the initial process. An original proof is provided
    • 

    corecore