594 research outputs found

    Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration

    Get PDF
    In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces

    Kernelized Reinforcement Learning with Order Optimal Regret Bounds

    Full text link
    Reinforcement learning (RL) has shown empirical success in various real world settings with complex models and large state-action spaces. The existing analytical results, however, typically focus on settings with a small number of state-actions or simple models such as linearly modeled state-action value functions. To derive RL policies that efficiently handle large state-action spaces with more general value functions, some recent works have considered nonlinear function approximation using kernel ridge regression. We propose Ο€\pi-KRVI, an optimistic modification of least-squares value iteration, when the state-action value function is represented by an RKHS. We prove the first order-optimal regret guarantees under a general setting. Our results show a significant polynomial in the number of episodes improvement over the state of the art. In particular, with highly non-smooth kernels (such as Neural Tangent kernel or some Mat\'ern kernels) the existing results lead to trivial (superlinear in the number of episodes) regret bounds. We show a sublinear regret bound that is order optimal in the case of Mat\'ern kernels where a lower bound on regret is known

    Stagewise Safe Bayesian Optimization with Gaussian Processes

    Get PDF
    Enforcing safety is a key aspect of many problems pertaining to sequential decision making under uncertainty, which require the decisions made at every step to be both informative of the optimal decision and also safe. For example, we value both efficacy and comfort in medical therapy, and efficiency and safety in robotic control. We consider this problem of optimizing an unknown utility function with absolute feedback or preference feedback subject to unknown safety constraints. We develop an efficient safe Bayesian optimization algorithm, StageOpt, that separates safe region expansion and utility function maximization into two distinct stages. Compared to existing approaches which interleave between expansion and optimization, we show that StageOpt is more efficient and naturally applicable to a broader class of problems. We provide theoretical guarantees for both the satisfaction of safety constraints as well as convergence to the optimal utility value. We evaluate StageOpt on both a variety of synthetic experiments, as well as in clinical practice. We demonstrate that StageOpt is more effective than existing safe optimization approaches, and is able to safely and effectively optimize spinal cord stimulation therapy in our clinical experiments
    • …
    corecore