4 research outputs found

    Maximizing Social Welfare in Score-Based Social Distance Games

    Full text link
    Social distance games have been extensively studied as a coalition formation model where the utilities of agents in each coalition were captured using a utility function uu that took into account distances in a given social network. In this paper, we consider a non-normalized score-based definition of social distance games where the utility function usu^s depends on a generic scoring vector ss, which may be customized to match the specifics of each individual application scenario. As our main technical contribution, we establish the tractability of computing a welfare-maximizing partitioning of the agents into coalitions on tree-like networks, for every score-based function usu^s. We provide more efficient algorithms when dealing with specific choices of usu^s or simpler networks, and also extend all of these results to computing coalitions that are Nash stable or individually rational. We view these results as a further strong indication of the usefulness of the proposed score-based utility function: even on very simple networks, the problem of computing a welfare-maximizing partitioning into coalitions remains open for the originally considered canonical function uu.Comment: Short version appeared at TARK 2023. arXiv admin note: substantial text overlap with arXiv:2307.0506

    On Non-Cooperativeness in Social Distance Games

    No full text
    We consider Social Distance Games (SDGs), that is cluster formation games in which the utility of each agent only depends on the composition of the cluster she belongs to, proportionally to her harmonic centrality, i.e., to the average inverse distance from the other agents in the cluster. Under a non-cooperative perspective, we adopt Nash stable outcomes, in which no agent can improve her utility by unilaterally changing her coalition, as the target solution concept. Although a Nash equilibrium for a SDG can always be computed in polynomial time, we obtain a negative result concerning the game convergence and we prove that computing a Nash equilibrium that maximizes the social welfare is NP-hard by a polynomial time reduction from the NP-complete Restricted Exact Cover by 3-Sets problem. We then focus on the performance of Nash equilibria and provide matching upper bound and lower bounds on the price of anarchy of Θ(n), where n is the number of nodes of the underlying graph. Moreover, we show that there exists a class of SDGs having a lower bound on the price of stability of 6/5 − ε, for any ε > 0. Finally, we characterize the price of stability 5 of SDGs for graphs with girth 4 and girth at least 5, the girth being the length of the shortest cycle in the graph.Peer reviewe

    On Non-Cooperativeness in Social Distance Games

    No full text
    We consider Social Distance Games (SDGs), that is cluster formation games in which the utility of each agent only depends on the composition of the cluster she belongs to, proportionally to her harmonic centrality, i.e., to the average inverse distance from the other agents in the cluster. Under a non-cooperative perspective, we adopt Nash stable outcomes, in which no agent can improve her utility by unilaterally changing her coalition, as the target solution concept. Although a Nash equilibrium for a SDG can always be computed in polynomial time, we obtain a negative result concerning the game convergence and we prove that computing a Nash equilibrium that maximizes the social welfare is NP-hard by a polynomial time reduction from the NP-complete Restricted Exact Cover by 3-Sets problem. We then focus on the performance of Nash equilibria and provide matching upper bound and lower bounds on the price of anarchy of Θ(n), where n is the number of nodes of the underlying graph. Moreover, we show that there exists a class of SDGs having a lower bound on the price of stability of 6/5 − ε, for any ε > 0. Finally, we characterize the price of stability 5 of SDGs for graphs with girth 4 and girth at least 5, the girth being the length of the shortest cycle in the graph.Peer reviewe

    On Non-Cooperativeness in Social Distance Games

    No full text
    corecore