35 research outputs found

    Improving End-to-End Speech Recognition with Policy Learning

    Full text link
    Connectionist temporal classification (CTC) is widely used for maximum likelihood learning in end-to-end speech recognition models. However, there is usually a disparity between the negative maximum likelihood and the performance metric used in speech recognition, e.g., word error rate (WER). This results in a mismatch between the objective function and metric during training. We show that the above problem can be mitigated by jointly training with maximum likelihood and policy gradient. In particular, with policy learning we are able to directly optimize on the (otherwise non-differentiable) performance metric. We show that joint training improves relative performance by 4% to 13% for our end-to-end model as compared to the same model learned through maximum likelihood. The model achieves 5.53% WER on Wall Street Journal dataset, and 5.42% and 14.70% on Librispeech test-clean and test-other set, respectively

    Contextual Sequence Modeling for Recommendation with Recurrent Neural Networks

    Full text link
    Recommendations can greatly benefit from good representations of the user state at recommendation time. Recent approaches that leverage Recurrent Neural Networks (RNNs) for session-based recommendations have shown that Deep Learning models can provide useful user representations for recommendation. However, current RNN modeling approaches summarize the user state by only taking into account the sequence of items that the user has interacted with in the past, without taking into account other essential types of context information such as the associated types of user-item interactions, the time gaps between events and the time of day for each interaction. To address this, we propose a new class of Contextual Recurrent Neural Networks for Recommendation (CRNNs) that can take into account the contextual information both in the input and output layers and modifying the behavior of the RNN by combining the context embedding with the item embedding and more explicitly, in the model dynamics, by parametrizing the hidden unit transitions as a function of context information. We compare our CRNNs approach with RNNs and non-sequential baselines and show good improvements on the next event prediction task
    corecore