155 research outputs found

    An overview on deep learning-based approximation methods for partial differential equations

    Full text link
    It is one of the most challenging problems in applied mathematics to approximatively solve high-dimensional partial differential equations (PDEs). Recently, several deep learning-based approximation algorithms for attacking this problem have been proposed and tested numerically on a number of examples of high-dimensional PDEs. This has given rise to a lively field of research in which deep learning-based methods and related Monte Carlo methods are applied to the approximation of high-dimensional PDEs. In this article we offer an introduction to this field of research, we review some of the main ideas of deep learning-based approximation methods for PDEs, we revisit one of the central mathematical results for deep neural network approximations for PDEs, and we provide an overview of the recent literature in this area of research.Comment: 23 page

    A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations

    Full text link
    Deep neural networks and other deep learning methods have very successfully been applied to the numerical approximation of high-dimensional nonlinear parabolic partial differential equations (PDEs), which are widely used in finance, engineering, and natural sciences. In particular, simulations indicate that algorithms based on deep learning overcome the curse of dimensionality in the numerical approximation of solutions of semilinear PDEs. For certain linear PDEs this has also been proved mathematically. The key contribution of this article is to rigorously prove this for the first time for a class of nonlinear PDEs. More precisely, we prove in the case of semilinear heat equations with gradient-independent nonlinearities that the numbers of parameters of the employed deep neural networks grow at most polynomially in both the PDE dimension and the reciprocal of the prescribed approximation accuracy. Our proof relies on recently introduced multilevel Picard approximations of semilinear PDEs.Comment: 29 page

    Deep splitting method for parabolic PDEs

    Full text link
    In this paper we introduce a numerical method for nonlinear parabolic PDEs that combines operator splitting with deep learning. It divides the PDE approximation problem into a sequence of separate learning problems. Since the computational graph for each of the subproblems is comparatively small, the approach can handle extremely high-dimensional PDEs. We test the method on different examples from physics, stochastic control and mathematical finance. In all cases, it yields very good results in up to 10,000 dimensions with short run times.Comment: 25 page
    • …
    corecore