115 research outputs found

    Design a new proposed route optimization scheme based NEMO-Centric MANEMO (NCM)

    Get PDF
    Route Optimization (RO) refers to any approach that optimizes the transmission of packets between a Mobile Network Node/Mobile Router and a Corresponding Node/Home Agent. RO would mean that a binding between the address of an MNN/MR and the location of the mobile network is registered at the CE/HA. Technically, route optimization mechanism comes up with a complementing solution for the pinball problem by avoiding the MRHA Bidirectional Tunnel(BT) that is to be used. This paper discusses the RO issues for NEMO and more specifically issues of Nested NEMO such astunneling redundant, HA dependency, processing delay, bottleneck, traffic congestion, ER selection, and scalability in the design consideration. In order to address NEMO ROsuboptimal, this work utilizes the NCM protocol plus to PHA. The proposed MANEMO RO scheme is a layer three solution to support RO for mobile networks. Additionally, the paper proposes the design to address Nested NEMO issues in a post disaster scenario by using Proxy Home Agent (PHA) in the infrastructure with using Neighbor Discovery protocol(TDP/NINA) for localizing communications. Thus, thesignaling message flow and the algorithm are written to give proposed scheme more flexibilit

    Performance analysis of BUNSD-LMA

    Get PDF
    The IETF is developed Network Mobility Basic Support (NEMO BSP) to support session continuity and reachability to the Mobile Network Nodes (MNNs) as one unit while they move. While NEMO move and attached to different networks, it needs to register the MNNs. This function of registration decreases the performance of NEMO. NEMO BSP suffers from some challenges. The most important of these challenges are route optimization, seamless mobility, handover latency and registration time. Binding Update No Sense Drop (BUNSD) Binding Cache Entry (BCE) in Local Mobility Anchor (LMA) is proposed to find a possible solution to MNNs. MNNs that are roaming in a Proxy Mobile IPv6 (PMIPv6) domain to perform seamless mobility while they are maintaining their session continuity through mobile router (MR). In this paper, BUNSD-LMA is analyzed mathematically with NEMO BS based on handover latency, total packet delivery delay cost, and throughput time during handoff. The analytical result shows that the BUNSD-LMA had better performance in term of handover, and registrations of MNNs. As a result the total packet loss is decreased and seamless mobility of MNNs enhanced compared to NEMO BS benchmarks. Keywords: NEMO, PMIPv6, BUNSD, MR, MAG, LM

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Enhancing The Quality Of Service In Mobile Networks Based On Nemo Basic Support Protocol

    Get PDF
    To fulfil the need for an uninterrupted Internet access along with the move in mobile networks as an alternative to the end-host mobility, the IETF NEMO working group was created to extend basic end-host mobility support in Mobile IPv6 (MIPv6). This group standardizes NEMO Basic Support Protocol (NEMO BS) to support network mobility. However, the handover latency in NEMO BS is high and the nested tunnels’ problem in the nested NEMO networks is not considered in the main specification of this protocol. Issues affecting the provision of QoS guarantees during the handoff process in NEMO BS are the handover latency, the disruption time, and the handoff failure and the packet loss

    Basic and Advanced features of IPv6 Over C2C NET

    Get PDF
    The GeoNet project will significantly contribute to vehicle communication by implementing a reference specification of a geographic addressing and routing pro- tocol with support for IPv6 to be used to deliver safety messages between cars but also between cars and the roadside infrastructure within a designated destination area. Geographic addressing and routing is a networking mechanism distributing the information to nodes within a designated destination area. A novel routing pro- tocol (C2C NET) is in charge of information dissemination over multiple hops until every vehicle has received this information within the destination area. This docu- ment mentions about basic and advanced features of IPv6 over C2C NET. First, we discover the missing features in current specification of C2C NET and shows some solutions. Second, specification of IPv6 over C2C NET are described and implemen- tation example is investigated in Linux system. Third, we propose advance features such as route optimization, multihoming and simultaneous utilization of NEMO and C2C NET V2V mode

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    IPv6 Security Issues: A Systematic Review Following PRISMA Guidelines

    Get PDF
    Since Internet Protocol version 6 is a new technology, insecure network configurations are inevitable. The researchers contributed a lot to spreading knowledge about IPv6 vulnerabilities and how to address them over the past two decades. In this study, a systematic literature review is conducted to analyze research progress in IPv6 security field following the Preferred Reporting Items for the Systematics Review and Meta-Analysis (PRISMA) method. A total of 427 studies have been reviewed from two databases, IEEE and Scopus. To fulfil the review goal, several key data elements were extracted from each study and two kinds of analysis were administered: descriptive analysis and literature classification. The results show positive signs of the research contributions in the field, and generally, they could be considered as a reference to explore the research of in the past two decades in IPv6 security field and to draw the future directions. For example, the percentage of publishing increased from 147 per decade from 2000-2010 to 330 per decade from 2011 to 2020 which means that the percentage increase was 124%. The number of citations is another key finding that reflects the great global interest in research devoted to IPv6 security issues, as it was 409 citations in the decade from 2000-2010, then increased to 1643 citations during the decade from 2011 to 2020, that is, the percentage increase was 302%
    corecore