2 research outputs found

    Kinetic modelling of colonies of myxobacteria

    Get PDF
    A new kinetic model for the dynamics of myxobacteria colonies on flat surfaces is derived formally, and first analytical and numerical results are presented. The model is based on the assumption of hard binary collisions of two different types: alignment and reversal. We investigate two different versions: a) realistic rod-shaped bacteria and b) artificial circular shaped bacteria called Maxwellian myxos in reference to the similar simplification of the gas dynamics Boltzmann equation for Maxwellian molecules. The sum of the corresponding collision operators produces relaxation towards nematically aligned equilibria, i.e. two groups of bacteria polarized in opposite directions. For the spatially homogeneous model a global existence and uniqueness result is proved as well as exponential decay to equilibrium for special initial conditions and for Maxwellian myxos. Only partial results are available for the rod-shaped case. These results are illustrated by numerical simulations, and a formal discussion of the macroscopic limit is presented

    ON MODELING COMPLEX COLLECTIVE BEHAVIOR IN MYXOBACTERIA

    No full text
    This paper reviews recent progress in modeling collective behaviors in myxobacteria using lattice gas cellular automata approach (LGCA). Myxobacteria are social bacteria that swarm, glide on surfaces and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies. Cells inside fruiting bodies differentiate into round, nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction. However, myxobacteria aggregation is the consequence of direct cell-contact interactions, not chemotaxis. In this paper, we review biological LGCA models based on local cell–cell contact signaling that have reproduced the rippling, streaming, aggregating and sporulation stages of the fruiting body formation in myxobacteria.Myxobacteria, collaborative behavior, cellular automata, pattern formation, complex systems, stochastic modeling
    corecore