9,101 research outputs found

    Multidimensional Index Modulation in Wireless Communications

    Full text link
    In index modulation schemes, information bits are conveyed through indexing of transmission entities such as antennas, subcarriers, times slots, precoders, subarrays, and radio frequency (RF) mirrors. Index modulation schemes are attractive for their advantages such as good performance, high rates, and hardware simplicity. This paper focuses on index modulation schemes in which multiple transmission entities, namely, {\em antennas}, {\em time slots}, and {\em RF mirrors}, are indexed {\em simultaneously}. Recognizing that such multidimensional index modulation schemes encourage sparsity in their transmit signal vectors, we propose efficient signal detection schemes that use compressive sensing based reconstruction algorithms. Results show that, for a given rate, improved performance is achieved when the number of indexed transmission entities is increased. We also explore indexing opportunities in {\em load modulation}, which is a modulation scheme that offers power efficiency and reduced RF hardware complexity advantages in multiantenna systems. Results show that indexing space and time in load modulated multiantenna systems can achieve improved performance

    Media-Based MIMO: A New Frontier in Wireless Communications

    Full text link
    The idea of Media-based Modulation (MBM), is based on embedding information in the variations of the transmission media (channel state). This is in contrast to legacy wireless systems where data is embedded in a Radio Frequency (RF) source prior to the transmit antenna. MBM offers several advantages vs. legacy systems, including "additivity of information over multiple receive antennas", and "inherent diversity over a static fading channel". MBM is particularly suitable for transmitting high data rates using a single transmit and multiple receive antennas (Single Input-Multiple Output Media-Based Modulation, or SIMO-MBM). However, complexity issues limit the amount of data that can be embedded in the channel state using a single transmit unit. To address this shortcoming, the current article introduces the idea of Layered Multiple Input-Multiple Output Media-Based Modulation (LMIMO-MBM). Relying on a layered structure, LMIMO-MBM can significantly reduce both hardware and algorithmic complexities, as well as the training overhead, vs. SIMO-MBM. Simulation results show excellent performance in terms of Symbol Error Rate (SER) vs. Signal-to-Noise Ratio (SNR). For example, a 4×164\times 16 LMIMO-MBM is capable of transmitting 3232 bits of information per (complex) channel-use, with SER 105 \simeq 10^{-5} at Eb/N03.5E_b/N_0\simeq -3.5dB (or SER 104 \simeq 10^{-4} at Eb/N0=4.5E_b/N_0=-4.5dB). This performance is achieved using a single transmission and without adding any redundancy for Forward-Error-Correction (FEC). This means, in addition to its excellent SER vs. energy/rate performance, MBM relaxes the need for complex FEC structures, and thereby minimizes the transmission delay. Overall, LMIMO-MBM provides a promising alternative to MIMO and Massive MIMO for the realization of 5G wireless networks.Comment: 26 pages, 11 figures, additional examples are given to further explain the idea of Media-Based Modulation. Capacity figure adde

    Time-Reversal of Nonlinear Waves - Applicability and Limitations

    Get PDF
    Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.Comment: 14 pages, 17 figures ; accepted for publication in Phys. Rev. Fluid

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light.

    Get PDF
    Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×10(5)). We confirm the presence of a time-reversed optical focus along with a diffuse background-a corollary of partial phase conjugation-and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics
    corecore