424 research outputs found

    Product Multicommodity Flow in Wireless Networks

    Get PDF
    We provide a tight approximate characterization of the nn-dimensional product multicommodity flow (PMF) region for a wireless network of nn nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in both an information theoretic sense and for a combinatorial interference model (e.g., Protocol model). These provide an inner approximation to the n2n^2 dimensional capacity region. These results answer the following questions which arise naturally from previous work: (a) What is the significance of 1/n1/\sqrt{n} in the scaling laws for the Protocol interference model obtained by Gupta and Kumar (2000)? (b) Can we obtain a tight approximation to the "maximum supportable flow" for node distributions more general than the geometric random distribution, traffic models other than randomly chosen source-destination pairs, and under very general assumptions on the channel fading model? We first establish that the random source-destination model is essentially a one-dimensional approximation to the capacity region, and a special case of product multi-commodity flow. Building on previous results, for a combinatorial interference model given by a network and a conflict graph, we relate the product multicommodity flow to the spectral properties of the underlying graphs resulting in computational upper and lower bounds. For the more interesting random fading model with additive white Gaussian noise (AWGN), we show that the scaling laws for PMF can again be tightly characterized by the spectral properties of appropriately defined graphs. As an implication, we obtain computationally efficient upper and lower bounds on the PMF for any wireless network with a guaranteed approximation factor.Comment: Revised version of "Capacity-Delay Scaling in Arbitrary Wireless Networks" submitted to the IEEE Transactions on Information Theory. Part of this work appeared in the Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005, and the Internation Symposium on Information Theory (ISIT), 200

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    A Tight Max-Flow Min-Cut Duality Theorem for Non-Linear Multicommodity Flows

    Full text link
    The Max-Flow Min-Cut theorem is the classical duality result for the Max-Flow problem, which considers flow of a single commodity. We study a multiple commodity generalization of Max-Flow in which flows are composed of real-valued k-vectors through networks with arc capacities formed by regions in \R^k. Given the absence of a clear notion of ordering in the multicommodity case, we define the generalized max flow as the feasible region of all flow values. We define a collection of concepts and operations on flows and cuts in the multicommodity setting. We study the mutual capacity of a set of cuts, defined as the set of flows that can pass through all cuts in the set. We present a method to calculate the mutual capacity of pairs of cuts, and then generalize the same to a method of calculation for arbitrary sets of cuts. We show that the mutual capacity is exactly the set of feasible flows in the network, and hence is equal to the max flow. Furthermore, we present a simple class of the multicommodity max flow problem where computations using this tight duality result could run significantly faster than default brute force computations. We also study more tractable special cases of the multicommodity max flow problem where the objective is to transport a maximum real or integer multiple of a given vector through the network. We devise an augmenting cycle search algorithm that reduces the optimization problem to one with m constraints in at most \R^{(m-n+1)k} space from one that requires mn constraints in \R^{mk} space for a network with n nodes and m edges. We present efficient algorithms that compute eps-approximations to both the ratio and the integer ratio maximum flow problems

    On duality and fractionality of multicommodity flows in directed networks

    Get PDF
    In this paper we address a topological approach to multiflow (multicommodity flow) problems in directed networks. Given a terminal weight μ\mu, we define a metrized polyhedral complex, called the directed tight span TμT_{\mu}, and prove that the dual of μ\mu-weighted maximum multiflow problem reduces to a facility location problem on TμT_{\mu}. Also, in case where the network is Eulerian, it further reduces to a facility location problem on the tropical polytope spanned by μ\mu. By utilizing this duality, we establish the classifications of terminal weights admitting combinatorial min-max relation (i) for every network and (ii) for every Eulerian network. Our result includes Lomonosov-Frank theorem for directed free multiflows and Ibaraki-Karzanov-Nagamochi's directed multiflow locking theorem as special cases.Comment: 27 pages. Fixed minor mistakes and typos. To appear in Discrete Optimizatio

    Min-max results in combinatorial optimization

    Get PDF

    Improved Bi-criteria Approximation for the All-or-Nothing Multicommodity Flow Problem in Arbitrary Networks

    Full text link
    This paper addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated nn-node directed network and a set of kk commodities, with source-destination pairs (si,ti)(s_i,t_i) and demands di>0d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum {\em throughput} -- to satisfy their demands. The main contributions of this paper are two-fold: First, we present a bi-criteria approximation algorithm for this all-or-nothing multicommodity flow (ANF) problem. Our algorithm is the first to achieve a {\em constant approximation of the maximum throughput} with an {\em edge capacity violation ratio that is at most logarithmic in nn}, with high probability. Our approach is based on a version of randomized rounding that keeps splittable flows, rather than approximating those via a non-splittable path for each commodity: This allows our approach to work for {\em arbitrary directed edge-capacitated graphs}, unlike most of the prior work on the ANF problem. Our algorithm also works if we consider the weighted throughput, where the benefit gained by fully satisfying the demand for commodity ii is determined by a given weight wi>0w_i>0. Second, we present a derandomization of our algorithm that maintains the same approximation bounds, using novel pessimistic estimators for Bernstein's inequality. In addition, we show how our framework can be adapted to achieve a polylogarithmic fraction of the maximum throughput while maintaining a constant edge capacity violation, if the network capacity is large enough. One important aspect of our randomized and derandomized algorithms is their {\em simplicity}, which lends to efficient implementations in practice

    Approximation Algorithms for Survivable Multicommodity Flow Problems with Applications to Network Design

    Get PDF
    Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks
    • …
    corecore