12,800 research outputs found

    Complexity dichotomy on partial grid recognition

    Get PDF
    Deciding whether a graph can be embedded in a grid using only unit-length edges is NP-complete, even when restricted to binary trees. However, it is not difficult to devise a number of graph classes for which the problem is polynomial, even trivial. A natural step, outstanding thus far, was to provide a broad classification of graphs that make for polynomial or NP-complete instances. We provide such a classification based on the set of allowed vertex degrees in the input graphs, yielding a full dichotomy on the complexity of the problem. As byproducts, the previous NP-completeness result for binary trees was strengthened to strictly binary trees, and the three-dimensional version of the problem was for the first time proven to be NP-complete. Our results were made possible by introducing the concepts of consistent orientations and robust gadgets, and by showing how the former allows NP-completeness proofs by local replacement even in the absence of the latter

    A partitioning strategy for nonuniform problems on multiprocessors

    Get PDF
    The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning

    Methods and problems of wavelength-routing in all-optical networks

    Get PDF
    We give a survey of recent theoretical results obtained for wavelength-routing in all-optical networks. The survey is based on the previous survey in [Beauquier, B., Bermond, J-C., Gargano, L., Hell, P., Perennes, S., Vaccaro, U.: Graph problems arising from wavelength-routing in all-optical networks. In: Proc. of the 2nd Workshop on Optics and Computer Science, part of IPPS'97, 1997]. We focus our survey on the current research directions and on the used methods. We also state several open problems connected with this line of research, and give an overview of several related research directions

    Tight Bounds for On-line Tree Embedding

    Get PDF
    Many tree–structured computations are inherently parallel. As leaf processes are recursively spawned they can be assigned to independent processors in a multicomputer network. To maintain load balance, an on–line mapping algorithm must distribute processes equitably among processors. Additionally, the algorithm itself must be distributed in nature, and process allocation must be completed via message–passing with minimal communication overhead. This paper investigates bounds on the performance of deterministic and randomized algorithms for on–line tree embedding. In particular, we study tradeoffs between performance (load–balance) and communication overhead (message congest ion). We give a simple technique to derive lower bounds on the congestion that any on–line allocation algorithm must incur in order to guarantee load balance. This technique works for both randomized and deterministic algorithms, although we find that the performance of randomized on-line algorithms to be somewhat better than that of deterministic algorithms. Optimal bounds are achieved for several networks including multi–dimensional grids and butterflies
    • …
    corecore