494 research outputs found

    On Loss Functions for Supervised Monaural Time-Domain Speech Enhancement

    Get PDF
    Many deep learning-based speech enhancement algorithms are designed to minimize the mean-square error (MSE) in some transform domain between a predicted and a target speech signal. However, optimizing for MSE does not necessarily guarantee high speech quality or intelligibility, which is the ultimate goal of many speech enhancement algorithms. Additionally, only little is known about the impact of the loss function on the emerging class of time-domain deep learning-based speech enhancement systems. We study how popular loss functions influence the performance of deep learning-based speech enhancement systems. First, we demonstrate that perceptually inspired loss functions might be advantageous if the receiver is the human auditory system. Furthermore, we show that the learning rate is a crucial design parameter even for adaptive gradient-based optimizers, which has been generally overlooked in the literature. Also, we found that waveform matching performance metrics must be used with caution as they in certain situations can fail completely. Finally, we show that a loss function based on scale-invariant signal-to-distortion ratio (SI-SDR) achieves good general performance across a range of popular speech enhancement evaluation metrics, which suggests that SI-SDR is a good candidate as a general-purpose loss function for speech enhancement systems.Comment: Published in the IEEE Transactions on Audio, Speech and Language Processin

    Direction of Arrival with One Microphone, a few LEGOs, and Non-Negative Matrix Factorization

    Get PDF
    Conventional approaches to sound source localization require at least two microphones. It is known, however, that people with unilateral hearing loss can also localize sounds. Monaural localization is possible thanks to the scattering by the head, though it hinges on learning the spectra of the various sources. We take inspiration from this human ability to propose algorithms for accurate sound source localization using a single microphone embedded in an arbitrary scattering structure. The structure modifies the frequency response of the microphone in a direction-dependent way giving each direction a signature. While knowing those signatures is sufficient to localize sources of white noise, localizing speech is much more challenging: it is an ill-posed inverse problem which we regularize by prior knowledge in the form of learned non-negative dictionaries. We demonstrate a monaural speech localization algorithm based on non-negative matrix factorization that does not depend on sophisticated, designed scatterers. In fact, we show experimental results with ad hoc scatterers made of LEGO bricks. Even with these rudimentary structures we can accurately localize arbitrary speakers; that is, we do not need to learn the dictionary for the particular speaker to be localized. Finally, we discuss multi-source localization and the related limitations of our approach.Comment: This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech, and Language processing (TASLP

    Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks

    Full text link
    In this paper we propose the utterance-level Permutation Invariant Training (uPIT) technique. uPIT is a practically applicable, end-to-end, deep learning based solution for speaker independent multi-talker speech separation. Specifically, uPIT extends the recently proposed Permutation Invariant Training (PIT) technique with an utterance-level cost function, hence eliminating the need for solving an additional permutation problem during inference, which is otherwise required by frame-level PIT. We achieve this using Recurrent Neural Networks (RNNs) that, during training, minimize the utterance-level separation error, hence forcing separated frames belonging to the same speaker to be aligned to the same output stream. In practice, this allows RNNs, trained with uPIT, to separate multi-talker mixed speech without any prior knowledge of signal duration, number of speakers, speaker identity or gender. We evaluated uPIT on the WSJ0 and Danish two- and three-talker mixed-speech separation tasks and found that uPIT outperforms techniques based on Non-negative Matrix Factorization (NMF) and Computational Auditory Scene Analysis (CASA), and compares favorably with Deep Clustering (DPCL) and the Deep Attractor Network (DANet). Furthermore, we found that models trained with uPIT generalize well to unseen speakers and languages. Finally, we found that a single model, trained with uPIT, can handle both two-speaker, and three-speaker speech mixtures
    • …
    corecore