3 research outputs found

    On Deadlockability, Liveness and Reversibility in Subclasses of Weighted Petri Nets

    Get PDF
    International audienceLiveness, (non-)deadlockability and reversibility are behavioral properties of Petri nets that are fundamental for many real-world systems. Such properties are often required to be mono-tonic, meaning preserved upon any increase of the marking. However, their checking is intractable in general and their monotonicity is not always satisfied. To simplify the analysis of these features, structural approaches have been fruitfully exploited in particular subclasses of Petri nets, deriving the behavior from the underlying graph and the initial marking only, often in polynomial time. In this paper, we further develop these efficient structural methods to analyze deadlockability, live-ness, reversibility and their monotonicity in weighted Petri nets. We focus on the join-free subclass, which forbids synchronizations, and on the homogeneous asymmetric-choice subclass, which allows conflicts and synchronizations in a restricted fashion. For the join-free nets, we provide several structural conditions for checking liveness, (non-)deadlock-ability, reversibility and their monotonicity. Some of these methods operate in polynomial time. Furthermore , in this class, we show that liveness, non-deadlockability and reversibility, taken together or separately, are not always monotonic, even under the assumptions of structural boundedness and structural liveness. These facts delineate more sharply the frontier between monotonicity and non-monotonicity of the behavior in weighted Petri nets, present already in the join-free subclass. In addition, we use part of this new material to correct a flaw in the proof of a previous characterization of monotonic liveness and boundedness for homogeneous asymmetric-choice nets, published in 2004 and left unnoticed

    On liveness and deadlockability in subclasses of weighted Petri nets

    No full text
    Structural approaches have greatly simplified the analysis of intractable properties in Petri nets, notably liveness. In this paper, we further develop these structural methods in particular weighted subclasses of Petri nets to analyze liveness and deadlockability, the latter property being a strong form of non-liveness. For homogeneous join-free nets, from the analysis of specific substructures, we provide the first polynomial-time characterizations of structural liveness and structural deadlockability, expressing respectively the existence of a live marking and the deadlockability of every marking. For the join-free class, assuming structural boundedness and leaving out the homogeneity constraint, we show that liveness is not monotonic, meaning not always preserved upon any increase of a live marking. Finally, we use this new material to correct a flaw in the proof of a previous characterization of monotonic liveness and boundedness for homogeneous asymmetric-choice nets, published in 2004 and left unnoticed.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore