55,462 research outputs found

    Stochastic optimization methods for the simultaneous control of parameter-dependent systems

    Full text link
    We address the application of stochastic optimization methods for the simultaneous control of parameter-dependent systems. In particular, we focus on the classical Stochastic Gradient Descent (SGD) approach of Robbins and Monro, and on the recently developed Continuous Stochastic Gradient (CSG) algorithm. We consider the problem of computing simultaneous controls through the minimization of a cost functional defined as the superposition of individual costs for each realization of the system. We compare the performances of these stochastic approaches, in terms of their computational complexity, with those of the more classical Gradient Descent (GD) and Conjugate Gradient (CG) algorithms, and we discuss the advantages and disadvantages of each methodology. In agreement with well-established results in the machine learning context, we show how the SGD and CSG algorithms can significantly reduce the computational burden when treating control problems depending on a large amount of parameters. This is corroborated by numerical experiments

    Randomized Solutions to Convex Programs with Multiple Chance Constraints

    Full text link
    The scenario-based optimization approach (`scenario approach') provides an intuitive way of approximating the solution to chance-constrained optimization programs, based on finding the optimal solution under a finite number of sampled outcomes of the uncertainty (`scenarios'). A key merit of this approach is that it neither assumes knowledge of the uncertainty set, as it is common in robust optimization, nor of its probability distribution, as it is usually required in stochastic optimization. Moreover, the scenario approach is computationally efficient as its solution is based on a deterministic optimization program that is canonically convex, even when the original chance-constrained problem is not. Recently, researchers have obtained theoretical foundations for the scenario approach, providing a direct link between the number of scenarios and bounds on the constraint violation probability. These bounds are tight in the general case of an uncertain optimization problem with a single chance constraint. However, this paper shows that these bounds can be improved in situations where the constraints have a limited `support rank', a new concept that is introduced for the first time. This property is typically found in a large number of practical applications---most importantly, if the problem originally contains multiple chance constraints (e.g. multi-stage uncertain decision problems), or if a chance constraint belongs to a special class of constraints (e.g. linear or quadratic constraints). In these cases the quality of the scenario solution is improved while the same bound on the constraint violation probability is maintained, and also the computational complexity is reduced.Comment: This manuscript is the preprint of a paper submitted to the SIAM Journal on Optimization and it is subject to SIAM copyright. SIAM maintains the sole rights of distribution or publication of the work in all forms and media. If accepted, the copy of record will be available at http://www.siam.or

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99
    • …
    corecore