1,364 research outputs found

    Encoding a qubit in an oscillator

    Get PDF
    Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the noncommutative geometry of phase space to protect against errors that shift the values of the canonical variables q and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states. Finite-dimensional versions of these codes can be constructed that protect encoded quantum information against shifts in the amplitude or phase of a d-state system. Continuous-variable codes can be invoked to establish lower bounds on the quantum capacity of Gaussian quantum channels.Comment: 22 pages, 8 figures, REVTeX, title change (qudit -> qubit) requested by Phys. Rev. A, minor correction

    An introduction of the theory of nonlinear error-correcting codes

    Get PDF
    Nonlinear error-correcting codes are the topic of this thesis. As a class of codes, it has been investigated far less than the class of linear error-correcting codes. While the latter have many practical advantages, it the former that contain the optimal error-correcting codes. In this project the theory (with illustrative examples) of currently known nonlinear codes is presented. Many definitions and theorems (often with their proofs) are presented thus providing the reader with the opportunity to experience the necessary level of mathematical rigor for good understanding of the subject. Also, the examples will give the reader the additional benefit of seeing how the theory can be put to use. An introduction to a technique for finding new codes via computer search is presented

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Perfect binary codes: classification and properties

    Get PDF
    An r-perfect binary code is a subset of ℤ2n such that for any word, there is a unique codeword at Hamming distance at most r. Such a code is r-error-correcting. Two codes are equivalent if one can be obtained from the other by permuting the coordinates and adding a constant vector. The main result of this thesis is a computer-aided classification, up to equivalence, of the 1-perfect binary codes of length 15. In an extended 1-perfect code, the neighborhood of a codeword corresponds to a Steiner quadruple system. To utilize this connection, we start with a computational classification of Steiner quadruple systems of order 16. This classification is also used to establish the nonexistence of Steiner quintuple systems S(4, 5, 17). The classification of the codes is used for computational examination of their properties. These properties include occurrences of Steiner triple and quadruple systems, automorphisms, ranks, structure of i-components and connections to orthogonal arrays and mixed perfect codes. It is also proved that extended 1-perfect binary codes are equivalent if and only if their minimum distance graphs are isomorphic

    Perfect 1-error-correcting Hurwitz weight codes

    Get PDF
    Let( pipi) be a Hurwitz prime and (p=pipistarp = pi pi ^star). In this paper, we construct perfect 1-error-correcting codes in (calHpincal{H}_{pi}^n) for every prime number (p>3p > 3), where (calHcal{H}) denotes the set of Hurwitz integers

    On perfect 1-mathcalEmathcal E-error-correcting codes

    Get PDF
    We generalize the concept of perfect Lee-error-correcting codes, and present constructions of this new class of perfect codes that are called perfect 1-mathcalEmathcal{E}-error-correcting codes. We also show that in some cases such codes contain quite a few perfect 1-error-correcting qq-ary Hamming codes as subsets
    corecore