1,431 research outputs found

    Five Guidelines for Partition Analysis with Applications to Lecture Hall-type Theorems

    Full text link
    Five simple guidelines are proposed to compute the generating function for the nonnegative integer solutions of a system of linear inequalities. In contrast to other approaches, the emphasis is on deriving recurrences. We show how to use the guidelines strategically to solve some nontrivial enumeration problems in the theory of partitions and compositions. This includes a strikingly different approach to lecture hall-type theorems, with new qq-series identities arising in the process. For completeness, we prove that the guidelines suffice to find the generating function for any system of homogeneous linear inequalities with integer coefficients. The guidelines can be viewed as a simplification of MacMahon's partition analysis with ideas from matrix techiniques, Elliott reduction, and ``adding a slice''

    Closed form summation of C-finite sequences

    Get PDF
    We consider sums of the form βˆ‘j=0nβˆ’1F1(a1n+b1j+c1)F2(a2n+b2j+c2)...Fk(akn+bkj+ck),\sum_{j=0}^{n-1}F_1(a_1n+b_1j+c_1)F_2(a_2n+b_2j+c_2)... F_k(a_kn+b_kj+c_k), in which each {Fi(n)}\{F_i(n)\} is a sequence that satisfies a linear recurrence of degree D(i)<∞D(i)<\infty, with constant coefficients. We assume further that the aia_i's and the ai+bia_i+b_i's are all nonnegative integers. We prove that such a sum always has a closed form, in the sense that it evaluates to a linear combination of a finite set of monomials in the values of the sequences {Fi(n)}\{F_i(n)\} with coefficients that are polynomials in nn. We explicitly describe two different sets of monomials that will form such a linear combination, and give an algorithm for finding these closed forms, thereby completely automating the solution of this class of summation problems. We exhibit tools for determining when these explicit evaluations are unique of their type, and prove that in a number of interesting cases they are indeed unique. We also discuss some special features of the case of ``indefinite summation," in which a1=a2=...=ak=0a_1=a_2=... = a_k = 0

    Compositions into Powers of bb: Asymptotic Enumeration and Parameters

    Full text link
    For a fixed integer base bβ‰₯2b\geq2, we consider the number of compositions of 11 into a given number of powers of bb and, related, the maximum number of representations a positive integer can have as an ordered sum of powers of bb. We study the asymptotic growth of those numbers and give precise asymptotic formulae for them, thereby improving on earlier results of Molteni. Our approach uses generating functions, which we obtain from infinite transfer matrices. With the same techniques the distribution of the largest denominator and the number of distinct parts are investigated
    • …
    corecore