3 research outputs found

    Blockchain moderated by empty blocks to reduce the energetic impact of crypto-moneys

    Get PDF
    While cryptocurrencies and blockchain applications continue to gain popularity, their energy cost is evidently becoming unsustainable. In most instances, the main cost comes from the required amount of energy for the Proof-of-Work, and this cost is inherent to the design. In addition, useless costs from discarded work (e.g., the so-called Forks) and lack of scalability (in number of users and in rapid transactions) limit their practical effectiveness. In this paper, we present an innovative scheme which eliminates the nonce and thus the burden of the Proof-of-Work which is the main cause of the energy waste in cryptocurrencies such as Bitcoin. We prove that our scheme guarantees a tunable and bounded average number of simultaneous mining whatever the size of the population in competition, thus by making the use of nonce-based techniques unnecessary, achieves scalability without the cost of consuming a large volume of energy. The technique used in the proof of our scheme is based on the analogy of the analysis of a green leader election. The additional difference with Proof-of-Work schemes (beyond the suppression of the nonce field that is triggering most of the waste), is the introduction of (what we denote as) "empty blocks" which aim are to call regular blocks following a staircase set of values. Our scheme reduces the risk of Forks and provides tunable scalability for the number of users and the speed of block generation. We also prove using game theoretical analysis that our scheme is resilient to unfair competitive investments (e.g., "51 percent" attack) and block nursing.Comment: preliminary version appeared in CryBlock'2019, The IEEE 2nd Workshop on Cryptocurrencies and Blockchains for Distributed Systems (co-located with INFOCOM 2019), April 29th, 2019. Paris, France. Green Mining: toward a less energetic impact of cryptocurrencies, P. Jacquet and B. Mans, IEEE Press, 6 page

    Blockchain moderated by empty blocks to reduce the energetic impact of crypto-moneys

    Get PDF
    International audienceWhile cryptocurrencies and blockchain applications continue to gain popularity, their energy cost is evidently becoming unsustainable. In most instances, the main cost comes from the required amount of energy for the Proof-of-Work, and this cost is inherent to the design. In addition, useless costs from discarded work (e.g., the so-called Forks) and lack of scalability (in number of users and in rapid transactions) limit their practical effectiveness. In this paper, we present an innovative scheme which eliminates the nonce and thus the burden of the Proof-of-Work which is the main cause of the energy waste in cryptocurrencies such as Bitcoin. We prove that our scheme guarantees a tunable and bounded average number of simultaneous mining whatever the size of the population in competition, thus by making the use of nonce-based techniques unnecessary, achieves scalability without the cost of consuming a large volume of energy. The technique used in the proof of our scheme is based on the analogy of the analysis of a green leader election. The additional difference with Proof-of-Work schemes (beyond the suppression of the nonce field that is triggering most of the waste), is the introduction of (what we denote as) "empty blocks" which aim are to call regular blocks following a staircase set of values. Our scheme reduces the risk of Forks and provides tunable scalability for the number of users and the speed of block generation. We also prove using game theoretical analysis that our scheme is resilient to unfair competitive investments (e.g., "51 percent" attack) and block nursing
    corecore