117 research outputs found

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of GXG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of GXG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min{k,l}n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klogl)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klogl)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    Regularity of Edge Ideals and Their Powers

    Full text link
    We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals of graphs and their powers. Our focus is on bounds and exact values of  reg I(G)\text{ reg } I(G) and the asymptotic linear function  reg I(G)q\text{ reg } I(G)^q, for q1,q \geq 1, in terms of combinatorial data of the given graph G.G.Comment: 31 pages, 15 figure

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor

    Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions

    Get PDF
    AbstractWe study graph properties that admit an increasing, or equivalently decreasing, sequence of graphs on the same vertex set such that for any two consecutive graphs in the sequence their difference is a single edge. This is useful for characterizing and computing minimal completions and deletions of arbitrary graphs into having these properties. We prove that threshold graphs and chain graphs admit such sequences. Based on this characterization and other structural properties, we present linear-time algorithms both for computing minimal completions and deletions into threshold, chain, and bipartite graphs, and for extracting a minimal completion or deletion from a given completion or deletion. Minimum completions and deletions into these classes are NP-hard to compute

    A Polynomial Delay Algorithm for Enumerating Minimal Dominating Sets in Chordal Graphs

    Full text link
    An output-polynomial algorithm for the listing of minimal dominating sets in graphs is a challenging open problem and is known to be equivalent to the well-known Transversal problem which asks for an output-polynomial algorithm for listing the set of minimal hitting sets in hypergraphs. We give a polynomial delay algorithm to list the set of minimal dominating sets in chordal graphs, an important and well-studied graph class where such an algorithm was open for a while.Comment: 13 pages, 1 figure, submitte
    corecore