118 research outputs found

    Intermediate arithmetic operations on ordinal numbers

    Full text link
    There are two well-known ways of doing arithmetic with ordinal numbers: the "ordinary" addition, multiplication, and exponentiation, which are defined by transfinite iteration; and the "natural" (or Hessenberg) addition and multiplication (denoted ⊕\oplus and ⊗\otimes), each satisfying its own set of algebraic laws. In 1909, Jacobsthal considered a third, intermediate way of multiplying ordinals (denoted ×\times), defined by transfinite iteration of natural addition, as well as the notion of exponentiation defined by transfinite iteration of his multiplication, which we denote α×β\alpha^{\times\beta}. (Jacobsthal's multiplication was later rediscovered by Conway.) Jacobsthal showed these operations too obeyed algebraic laws. In this paper, we pick up where Jacobsthal left off by considering the notion of exponentiation obtained by transfinitely iterating natural multiplication instead; we will denote this α⊗β\alpha^{\otimes\beta}. We show that α⊗(β⊕γ)=(α⊗β)⊗(α⊗γ)\alpha^{\otimes(\beta\oplus\gamma)} = (\alpha^{\otimes\beta}) \otimes(\alpha^{\otimes\gamma}) and that α⊗(β×γ)=(α⊗β)⊗γ\alpha^{\otimes(\beta\times\gamma)}=(\alpha^{\otimes\beta})^{\otimes\gamma}; note the use of Jacobsthal's multiplication in the latter. We also demonstrate the impossibility of defining a "natural exponentiation" satisfying reasonable algebraic laws.Comment: 18 pages, 3 table

    Determinant Formulas of Some Hessenberg Matrices with Jacobsthal Entries

    Get PDF
    In this paper, we evaluate determinants of several families of Hessenberg matrices having various subsequences of the Jacobsthal sequence as their nonzero entries. These identities may be written equivalently as formulas for certain linearly recurrent sequences expressed in terms of sums of products of Jacobsthal numbers with multinomial coefficients. Among the sequences that arise in this way include the Mersenne, Lucas and Jacobsthal-Lucas numbers as well as the squares of the Jacobsthal and Mersenne sequences. These results are extended to Hessenberg determinants involving sequences that are derived from two general families of linear second-order recurrences. Finally, combinatorial proofs are provided for several of our determinant results which make use of various correspondences between Jacobsthal tilings and certain restricted classes of binary words
    • …
    corecore