214 research outputs found

    Sampling decomposable graphs using a Markov chain on junction trees

    Full text link
    Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs, except for problems of very small scale. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three specific models.Comment: 22 pages, 7 figures, 1 table. V2 as V1 except that Fig 1 was corrected. V3 has significant edits, dropping some figures and including additional examples and a discussion of the non-decomposable case. V4 is further edited following review, and includes additional reference

    Uniform generation in trace monoids

    Full text link
    We consider the problem of random uniform generation of traces (the elements of a free partially commutative monoid) in light of the uniform measure on the boundary at infinity of the associated monoid. We obtain a product decomposition of the uniform measure at infinity if the trace monoid has several irreducible components-a case where other notions such as Parry measures, are not defined. Random generation algorithms are then examined.Comment: Full version of the paper in MFCS 2015 with the same titl

    Diversity in Parametric Families of Number Fields

    Full text link
    Let X be a projective curve defined over Q and t a non-constant Q-rational function on X of degree at least 2. For every integer n pick a point P_n on X such that t(P_n)=n. A result of Dvornicich and Zannier implies that, for large N, among the number fields Q(P_1),...,Q(P_N) there are at least cN/\log N distinct, where c>0. We prove that there are at least N/(\log N)^{1-c} distinct fields, where c>0.Comment: Minor inaccuracies detected by the referees are correcte

    Markovian dynamics of concurrent systems

    Full text link
    Monoid actions of trace monoids over finite sets are powerful models of concurrent systems---for instance they encompass the class of 1-safe Petri nets. We characterise Markov measures attached to concurrent systems by finitely many parameters with suitable normalisation conditions. These conditions involve polynomials related to the combinatorics of the monoid and of the monoid action. These parameters generalise to concurrent systems the coefficients of the transition matrix of a Markov chain. A natural problem is the existence of the uniform measure for every concurrent system. We prove this existence under an irreducibility condition. The uniform measure of a concurrent system is characterised by a real number, the characteristic root of the action, and a function of pairs of states, the Parry cocyle. A new combinatorial inversion formula allows to identify a polynomial of which the characteristic root is the smallest positive root. Examples based on simple combinatorial tilings are studied.Comment: 35 pages, 6 figures, 33 reference

    MCMC Sampling of Directed Flag Complexes with Fixed Undirected Graphs

    Full text link
    Constructing null models to test the significance of extracted information is a crucial step in data analysis. In this work, we provide a uniformly sampleable null model of directed graphs with the same (or similar) number of simplices in the flag complex, with the restriction of retaining the underlying undirected graph. We describe an MCMC-based algorithm to sample from this null model and statistically investigate the mixing behaviour. This is paired with a high-performance, Rust-based, publicly available implementation. The motivation comes from topological data analysis of connectomes in neuroscience. In particular, we answer the fundamental question: are the high Betti numbers observed in the investigated graphs evidence of an interesting topology, or are they merely a byproduct of the high numbers of simplices? Indeed, by applying our new tool on the connectome of C. Elegans and parts of the statistical reconstructions of the Blue Brain Project, we find that the Betti numbers observed are considerable statistical outliers with respect to this new null model. We thus, for the first time, statistically confirm that topological data analysis in microscale connectome research is extracting statistically meaningful information

    Uniform and Bernoulli measures on the boundary of trace monoids

    Full text link
    Trace monoids and heaps of pieces appear in various contexts in combinatorics. They also constitute a model used in computer science to describe the executions of asynchronous systems. The design of a natural probabilistic layer on top of the model has been a long standing challenge. The difficulty comes from the presence of commuting pieces and from the absence of a global clock. In this paper, we introduce and study the class of Bernoulli probability measures that we claim to be the simplest adequate probability measures on infinite traces. For this, we strongly rely on the theory of trace combinatorics with the M\"obius polynomial in the key role. These new measures provide a theoretical foundation for the probabilistic study of concurrent systems.Comment: 34 pages, 5 figures, 27 reference
    corecore