186,193 research outputs found

    Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming

    Full text link
    Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications including decoding error correcting codes and solving constraint satisfaction and inference problems. BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This work deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering LPs. We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding linear programming (LP) relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the min-sum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudo-polynomial time. Our results unify and extend recent results for the maximum weight matching problem by [Sanghavi et al.,'2011] and [Bayati et al., 2011] and for the maximum weight independent set problem [Sanghavi et al.'2009]

    The maximal energy of classes of integral circulant graphs

    Full text link
    The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count nn and a set D\cal D of divisors of nn in such a way that they have vertex set Zn\mathbb{Z}_n and edge set a,b:a,bZn,gcd(ab,n)D{{a,b}: a,b\in\mathbb{Z}_n, \gcd(a-b,n)\in {\cal D}}. For a fixed prime power n=psn=p^s and a fixed divisor set size D=r|{\cal D}| =r, we analyze the maximal energy among all matching integral circulant graphs. Let pa1<pa2<...<parp^{a_1} < p^{a_2} < ... < p^{a_r} be the elements of D{\cal D}. It turns out that the differences di=ai+1aid_i=a_{i+1}-a_{i} between the exponents of an energy maximal divisor set must satisfy certain balance conditions: (i) either all did_i equal q:=s1r1q:=\frac{s-1}{r-1}, or at most the two differences [q][q] and [q+1][q+1] may occur; %(for a certain dd depending on rr and ss) (ii) there are rules governing the sequence d1,...,dr1d_1,...,d_{r-1} of consecutive differences. For particular choices of ss and rr these conditions already guarantee maximal energy and its value can be computed explicitly.Comment: Discrete Applied Mathematics (2012

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.
    corecore